Cryptography I
 Exercise sheet 5

Ilja Kuzovkin

October 20, 2010

1 Exercise 5a

We have composite number n and we know that for one of it's factors $p p-1$ is powersmooth number. For solving that problem we can use Pollard's p-1 algorithm[1], implementation of which you will find in file exercise5a.py.
n factors are

```
p1 = 86194768618716286465819334092683429114930567699119082576117223017384723012
    75434959902175061220850111320122444300974234054494495326036638077800290674
    37019
p2 = 23917629537681961393203914587699227771929908038649708207338757455681390410
    37286153954600967544623389052416123539590853837707285234726557342262967388
    199
```


2 Exercise 5b

We know

$$
\begin{gathered}
c_{1}=m^{2} \bmod n \\
c_{2}=(a m+b)^{2} \bmod n
\end{gathered}
$$

where c_{1}, c_{2}, n, a, b are known and we want to find m.
From two equations above we can build an equation which will give us m :

$$
\begin{gathered}
c_{2}=(a m+b)^{2} \bmod n \\
c_{2}=a^{2} m^{2}+2 a b m+b^{2} \bmod n
\end{gathered}
$$

we can replace m^{2} by c_{1}, which will give us

$$
\begin{gathered}
c_{2}=a^{2} c_{1}+2 a b m+b^{2} \bmod n \\
2 a b m=c_{2}-a^{2} c_{1}-b^{2} \bmod n \\
m=\left(c_{2}-a^{2} c_{1}-b^{2}\right) *(2 a b)^{-1} \bmod n
\end{gathered}
$$

The calculation is performed in the execrise5b.py file. Also checks are performed there, to make sure message we got is the right one.
Answer is:

```
m = 287980884788990606567021445017818504875890912761117059377012043826075858762 3958038474091108395186273842882178243394244984948835759702909899521633442403
```


References

[1] http://en.wikipedia.org/wiki/Pollard's_p_-_1_algorithm

