
Cryptographic protocols.

Functionality for secure channels.

Ilja Kuzovkin

January 28, 2011

1 Introduction

We have an predefined functionality F , which provides secure channels for n parties. Our new
functionality must not allow reordering of the messages, an adversary A, who can decide when
the message will reach it’s destination will be obliged to transmit the messages in the correct
order, otherwise the protocol will fail. Also we have to forbid duplication of the messages. In
other words Mi and Pi will accept same message only once and reject duplicates.

Figure 1. Composed functionality we want to build.

2 Ordering and duplication control

Functionality F includes objects MF
1 . . .MF

n which provide functions needed for secure message
exchange. MF

i is controlled by Pi, Pi send a task to the MF
i through ini and after this task

is complete MF
i responds through outi back to the Pi. Our goal is to preserve the order of

those messages and somehow make them unique, to avoid duplication. Our functionality O also
includes object MO

1 . . .MO
n which add the following function to the system: each Mi has two

sets of counters counterini
1 . . . counterini

n and counterouti1 . . . counteroutin , they count how many
messages were received from Mj and how many were sent to Mj . When Pi want to send message
m to Pj then Pi gives the task to MO

i , MO
i appends counteroutij to the message, increments

1

counteroutij and forwards it to the MF
i it, which securely sends it to the MF

j , it forwards the

message to the MO
j and here MO

j checks if appended counteroutij equals counter
inj

i . If equals,

then everything is OK and we can forward message to the Mj and increment counter
inj

i . The
whole scheme looks as follows:

1. Pi send (m, j) to MO
i

2. MO
i send (m||counteroutij , j) to MF

i , increment counteroutij

3. MF
i send (m||counteroutij , j) to MF

j

4. MF
j send (m||counteroutij , j) to MO

j

5. MO
j check if counteroutij = counter

inj

i

• equal: MO
j send (m) to Pj , increment counter

inj

i

• not equal: do nothing

Such approach does not allow to break the order of the messages, because the receiver will
wait until he gets correct message and drop all other messages. And if we try to send one
message twice, it will be rejected, because counter, which counts incoming messages is already
incremented.

2

	Introduction
	Ordering and duplication control
	Predefined functionality for secure channels

