
Cryptographic protocols.

”Secure storage” service protocol

Ilja Kuzovkin

January 24, 2011

The goal is to design the protocol for secure file hosting. Functionality should consist of: ini-
tialization of communication, payment for the service, uploading file and storing it on he server,
generating the token by the server side and passing it to the client, returning corresponding file
when it is queried by client.

We will go through those steps one-by-one as separate subroutines.
In the formal descriptions of the protocols we skip steps which are being done inside one machine,
only the steps which include communication over the network are included into π-calculus and
common syntax descriptions.

1 Initialization

1.1 Description

Here client should ask server for service, server will respond and some key exchange for further
communication should be made. Shared key is needed for both parties to be sure further
communication is going between them two.

1. Client sends his public key PKC to the Server

2. Server signs it’s public key PKS and sends it to the client

3. Client verifies (using CA) that PKS is indeed Server’s public key

4. Client and Server exchange fresh symmetric key KS,C using Diffie–Hellman key exchange.
During key establishment Client encrypts every message using PKS and Server encrypts
every message using PKC

5. Client stores KS,C

6. Server stores KS,C and associates it with Client’s identity C

1



1.2 Representation in common syntax

C, S : client, server

pkC, pkS : asymmetric keys

kCS : symmetric key

g, a, b, p : number

1. C -> S: pkC

2. S -> C: pkS, {g, p}pkC (* CA part will go here *)

3. C -> S: {g^a mod p}pkS

4. S -> C: {g^b mod p}pkC (* at this point C and S can compute kCS *)

2 Payment

2.1 Description

Here Client is going to pass fee Mcoin to the Server and Server has to reply as he gets it.

1. Client generates nonce NC

2. Client sends c1 = EKS,C
(NC , C,Mcoin), and identity C to the Server

3. Server decrypts the message c1 using KS,C

4. Server checks if C from the c1 is the same as C Client sent by plain text

5. Server checks if Mcoin is correct fee (I mean correct amount of money)

6. If 4 and 5 are correct Server sends c2 = EKS,C
(NC) and is ready to accept the file.

7. Client decrypts c2 and checks if NC is the same. If it is, then Client can be sure that
Server got the fee and is ready to accept the file.

2.2 Representation in common syntax

C, S : client, server

kCS : symmetric key

nC : nonce

M_coin : number

1. C -> S: {nC, C, M_coin}kCS, C

2. S -> C: {nC}kCS

3 File upload

3.1 Description

Here Client will send file to the Secure Storage.

1. Client encrypts his file c3 = EPKC
(file)

2. Client send to the server c4 = EKS,C
(c3, C,N

2
C) and his identity C

3. Server decrypts c4 using KS,C

4. Server checks if C sent by plain text and C from c4 are the same

2



5. Server computes hash of encryption of a file h = hash(c3). Hash function has to be
one-way and 2nd preimage resistant (see 4.1).

6. Server stores h and c3 and now it has quadruple (C,PKC , h, c3) (which are: client identity,
client public key, hash, encrypted file)

7. Server sends to Client client c5 = EKS,C
(N2

C , h)

8. Client decodes c5 and checks if N2
C is the same

9. If N2
C is correct Client now can use h as token for file retrieval

3.2 Representation in common syntax

C, S : client, server

file : file

pkC : asymmetric keys

kCS : symmetric keys

nC : nonce

h : hash

1. C -> S: {{file}pkC, C, nC}kCS, C

2. S -> C: {nC, h}kCS

4 File request and retrieval

4.1 Description

File request can be made by anyone, not only the user who uploaded the file. So basically token
is public. It is secure if one-wayness of a hash function. Server will return encrypted file and if
user knows the key, he will be able to decrypt.

1. User sends token h to the server

2. Server returns corresponding c3 (which is the encrypted file)

4.2 Representation in common syntax

C, S : client, server

h : hash

enc_file : file encrypted with Client’s public key

1. C -> S: h

2. S -> C: enc_file

We do not need to create a model for the ProVerif, because during this dialog we have nothing
to hide. h is public hash, which everyone can use to retrieve the file and enc file is encrypted
file, so no one except Client can decrypt it.

5 Non-repudiation

5.1 Description

If the file returned by Server is not the Client expected to get, he can accuse Server in being
dishonest. Do to so Client broadcasts h and c3. Now everyone can compute h from c3 using
hash function, request same file from the Server and compare resulting files. Here 2nd preimage
resistance requirement (which was mentioned in 3.1.5) arises.

3



6 ProVerif

6.1 Representation in π-calculus

You can also find this code in the file pi-secure-storate-v1

free c.

private free s.

private free Mcoin.

private free file.

(* Public key cryptography *)

fun pk/1.

fun encrypt/2.

reduc decrypt(encrypt(x,pk(y)),y) = x.

(* Signatures *)

fun sign/2.

reduc getmess(sign(m,k)) = m.

reduc checksign(sign(m,k), pk(k)) = m.

(* Shared key cryptography *)

fun enc/2.

reduc dec(enc(x,y),y) = x.

(* Diffie-Hellman functions *)

fun exp/2.

fun gr/1.

equation exp(x,gr(y)) = exp(y,gr(x)).

(* Test whether secrets are secret *)

query attacker:s.

query attacker:Mcoin.

query attacker:file.

query evinj:endFparam(x) ==> evinj:beginFparam(x).

query evinj:endSymKey(x) ==> evinj:beginSymKey(x).

query evinj:endMcoin(x) ==> evinj:beginMcoin(x).

(* The process *)

let processC =

(* 2 in *)

in(c, m1);

let g = decrypt(m1, skS) in

4



(* 3 out *)

new a;

let v1 = encrypt(exp(a, g), pkS) in

out(c, v1);

(* 4 in *)

in(c, m2);

let gb = decrypt(m2, skC) in

event endSymKey(exp(a, gb));

let k = exp(a, gb) in

(* send secret over channel *)

out(c, enc(s, k));

(* payment *)

new nA;

new C;

event beginMcoin(Mcoin);

out(c, (enc((nA, C, Mcoin), kCS), C));

(* upload *)

new nC;

event beginFparam(encrypt(file, pkC));

out(c, (enc((encrypt(file, pkC), C, nC), kCS), C)).

let processS =

(* 2 out *)

new g;

let v1 = encrypt(g, pkC) in

out(c, v1);

(* 3 in *)

in(c, m1);

let ga = decrypt(m1, skS) in

(* 4 out *)

new b;

event beginSymKey(exp(b, ga));

let v2 = encrypt(exp(b, g), pkC) in

out(c, v2);

let k = exp(b, ga) in

(* receive secret over channel *)

in(c, m2);

let s2 = dec(m2, k) in

(* payment *)

in(c, (m3, C1));

let (nA, C2, Mcoin) = dec(m3, kCS) in

5



if C1 = C2 then

event endMcoin(Mcoin);

out(c, enc(nA, kCS));

(* upload *)

in(c, (m4, C3));

let (enc_file, C4, nC) = dec(m4, kCS) in

if C3 = C4 then

event endFparam(enc_file);

new h;

out(c, enc((nC, h),kCS)).

process

(* 1 *)

new skC;

let pkC = pk(skC) in out(c, pkC);

new skS;

let pkS = pk(skS) in out(c, pkS);

new kCS;

((!processC) | (!processS))

6.2 ProVerif Results

6.2.1 v1

Based on the file pi-secure-storage-v1.
Secret values remain secret

RESULT not attacker:s[] is true.

RESULT not attacker:Mcoin[] is true.

RESULT not attacker:file[] is true.

2 out of 3 correspondence properties also hold

RESULT evinj:endMcoin(x_67) ==> evinj:beginMcoin(x_67) is true.

RESULT evinj:endFparam(x_1991) ==> evinj:beginFparam(x_1991) is true.

But ProVerif found an possibility to break correspondence property in the process of symmetric
key exchange.

1. We assume as hypothesis that

attacker:encrypt(x_1819,pk(skS_16[])).

2. The message pk(skS_16[]) may be sent to the attacker at output {4}.

attacker:pk(skS_16[]).

3. We assume as hypothesis that

attacker:y_1816.

4. By 3, the attacker may know y_1816.

Using the function gr the attacker may obtain gr(y_1816).

attacker:gr(y_1816).

6



5. By 4, the attacker may know gr(y_1816).

By 2, the attacker may know pk(skS_16[]).

Using the function encrypt the attacker may obtain encrypt(gr(y_1816),pk(skS_16[])).

attacker:encrypt(gr(y_1816),pk(skS_16[])).

6. The message encrypt(gr(y_1816),pk(skS_16[])) that the attacker may have by 5

may be received at input {8}. The event beginSymKey(exp(y_1816,gr(b_1824)))

(with environment m1_20 = encrypt(gr(y_1816),pk(skS_16[])), @sid_170 = @sid_1817,

@occ10_907 = @occ_cst()) may be executed at {10}. So the message

encrypt(exp(b_1824,g[]),pk(skC_14[])) may be sent to the attacker at output {12}.

attacker:encrypt(exp(b_1824,g[]),pk(skC_14[])).

7. The message encrypt(x_1819,pk(skS_16[])) that the attacker may have by 1 may

be received at input {27}. The message encrypt(exp(b_1824,g[]),pk(skC_14[]))

that the attacker may have by 6 may be received at input {31}. So event

endSymKey(exp(a_1823,exp(b_1824,g[]))) may be executed at {33} in session endsid_1821.

end:endsid_1821,endSymKey(exp(a_1823,exp(b_1824,g[]))).

A more detailed output of the traces is available with

param traceDisplay = long.

out(c, pk(skC_14_8)) at {2}

out(c, pk(skS_16_5)) at {4}

out(c, encrypt(g,pk(skC_14_8))) at {7} in copy a_4

in(c, encrypt(a_2,pk(skS_16_5))) at {27} in copy a_1

out(c, encrypt(exp(a_40_6,a_2),pk(skS_16_5))) at {30} in copy a_1

in(c, encrypt(gr(a_3),pk(skS_16_5))) at {8} in copy a_4

event(beginSymKey(exp(b_22_7,gr(a_3)))) at {10} in copy a_4

out(c, encrypt(exp(b_22_7,g),pk(skC_14_8))) at {12} in copy a_4

in(c, encrypt(exp(b_22_7,g),pk(skC_14_8))) at {31} in copy a_1

event(endSymKey(exp(a_40_6,exp(b_22_7,g)))) at {33} in copy a_1

The event endSymKey(exp(a_40_6,exp(b_22_7,g))) is executed in session a_1.

A trace has been found, assuming the following hypothesis :

* attacker:encrypt(a_2[],pk(skS_16_5[]))

RESULT evinj:endSymKey(x_784) ==> evinj:beginSymKey(x_784) cannot be proved.

To fix that I added a nonce, which is being sent from the Client at the first step. This nonce is
encrypted by Server’s pkS. Server holds nonce in memory until key exchange is done and after
that encrypts this nonce by a newly exchanged key kCS and sends it over to the Client. Client
decrypts it with the same symmetric key kCS and checks if this nonce is the same as he sent in
the beginning of the dialog.

7



6.2.2 v2

Based on file pi-secure-storage-v2.
As we can see from the output below our fix is working.

RESULT evinj:endMcoin(x_70) ==> evinj:beginMcoin(x_70) is true.

RESULT evinj:endSymKey(x_764) ==> evinj:beginSymKey(x_764) is true.

RESULT evinj:endFparam(x_1770) ==> evinj:beginFparam(x_1770) is true.

RESULT not attacker:file[] is true.

RESULT not attacker:Mcoin[] is true.

RESULT not attacker:s[] is true.

6.2.3 v3

Based on file pi-secure-storage-v3.
Because processes were not working as expected, I replaced all reduc constructions with fun
and equation pairs. This helped and now both endOfS and endOfC are reachable. As we can
see from the run results below none of out correspondence properties holds:

268: RESULT not attacker:endOfS[] is false.

322: RESULT not attacker:endOfC[] is false.

440: RESULT evinj:endMcoin(x_9854) ==> evinj:beginMcoin(x_9854) is false.

526: RESULT evinj:endSymKey(x_14920) ==> evinj:beginSymKey(x_14920) is false.

683: RESULT evinj:endFparam(x_26294) ==> evinj:beginFparam(x_26294) is false.

690: RESULT not attacker:file[] is true.

696: RESULT not attacker:Mcoin[] is true.

702: RESULT not attacker:s[] is true.

8


	Initialization
	Description
	Representation in common syntax

	Payment
	Description
	Representation in common syntax

	File upload
	Description
	Representation in common syntax

	File request and retrieval
	Description
	Representation in common syntax

	Non-repudiation
	Description

	ProVerif
	Representation in -calculus
	ProVerif Results
	v1
	v2



