
University of Tartu

Faculty of Mathematics and Computer Science

Institute of Computer Science

Ilya Kuzovkin

Adaptive Interactive Learning:
a Novel Approach to Training

Brain-Computer Interface Systems

Master’s thesis

Supervisor: Konstantin Tretyakov, M.Sc

Author: .. ”.......” May 2013
Supervisor: ... ”.......” May 2013

Approved for defense
Professor: ... ”.......” May 2013

Tartu 2013

Contents

Introduction 9

1 Biological and Technological Background 11

1.1 Electroencephalography . 11

1.1.1 Biology of the human brain 11

1.1.2 EEG technology . 12

1.1.3 EEG signal . 13

1.2 Fourier Transform . 14

1.3 Machine Learning . 16

1.3.1 Supervised and unsupervised learning 16

1.3.2 Support vector machines . 17

1.3.3 Näıve Bayes classifier . 17

1.3.4 Decision tree classifier . 18

1.3.5 Self-organizing maps . 19

1.3.6 K-means . 20

1.3.7 Performance evaluation . 21

1.3.8 Principal component analysis 22

2 Emotiv EPOC and EEG Signal 25

2.1 Emotiv EPOC . 25

2.2 Signal Consistency . 26

2.3 Signal Distribution Over Different Mental States 27

3

2.4 Empirical Estimations of Complexity of Real Data 28

2.4.1 Comparing SOM and K-means on real data 28

2.4.2 Analyzing principal components 29

3 Adaptive Interactive Learning: A Novel Approach to BCI Train-
ing 31

3.1 Traditional BCI Training . 31

3.2 The Novel Approach . 32

3.2.1 Interactive adaptive learning 34

3.2.2 Predictive SOM . 34

3.2.3 Implementation of the interactive training
process . 36

3.2.4 A scheme to summarize . 40

4 Experiments on Artificial Data 41

4.1 Brain Signal Simulation . 41

4.1.1 Generating EEG-like data 41

4.1.2 Introducing components into noisy data 42

4.1.3 Generator . 43

4.2 Comparing Adaptive and Traditional Learning Methods in the Ar-
tificial Setting . 43

4.3 Traditional Simulator . 44

4.3.1 Simulating traditional behavior 44

4.3.2 Traditional simulator implementation 44

4.3.3 Results . 46

4.4 Adaptive Agent Simulation . 47

4.4.1 Simulating adaptive behavior 47

4.4.2 The implementation of the adaptive simulator 48

4.4.3 Results . 50

4.5 Dependency Between the Number of Mental States and System
Performance . 51

4

4.6 Comparison . 54

5 Experiments on Real Data 55

5.1 Experimental Setup . 55

5.2 Traditional Method . 56

5.3 Novel Method . 56

5.4 Results . 57

5.4.1 Facial expressions . 57

5.4.2 Mental states . 58

6 Discussion 59

Summary 61

Resümee 63

Appending A: Software download links and instructions 65

Bibliography 66

License 73

5

“Rabbit’s clever,” said Pooh thoughtfully.
”Yes,” said Piglet, ”Rabbit’s clever.”
”And he has Brain.”
”Yes,” said Piglet, ”Rabbit has Brain.”
There was a long silence.
”I suppose,” said Pooh, ”that that’s why he never
understands anything.”

— A. A. Milne, Winnie-the-Pooh

Introduction

Brain-Computer Interface (BCI) systems allow interaction between a person’s
brain and a computer. Among various applications of BCI the most intriguing
one is the ability to control external devices with the power of thought. A com-
mon way to achieve this lies in following consecutive steps:

Reading the signal. This can be done via various neuroimaging techniques such
as electroencephalography (EEG), electrocorticography (ECoG), magnetoen-
cephalography (MEG), functional near-infrared spectroscopy (fNIRS), func-
tional magnetic resonance imaging (fMRI), etc.

Signal processing allows us to eliminate artifacts and noise from the raw signal
and transform it into an appropriate representation.

Labeling the signal instances. We associate each piece of a signal with some
action (stimulus), that the corresponding brain activity should invoke.

Training a classifier. Sophisticated machine learning algorithms allow us to ex-
tract signal-to-action mapping from the acquired data and represent it as a
model.

Applying the classifier. By applying the model to the new instances of the
signal we can estimate which action is associated with the current mental
state. Thus we can use mental states to trigger desired behavior of the
machine.

However, the result of such a procedure is often much worse than one might hope
for. The reason lies neither in inadequate learning algorithms nor in the lack
of data. We believe that the main reason is the inconsistency of the incoming
signal. The test subject can not control which neurons in his brain will fire in
respond to certain mental actions, therefore the same thought or mental intention
often results in considerably different neuron activity and, therefore, in different
outgoing signals. One way to partially overcome this issue is to expose the test
subject to prolonged training, during which he will learn how to think in the right
way in order to trigger the action.

9

In this thesis we propose a system, which augments the existing approach to
the training of BCI systems with an interaction between the test subject and
the system. This introduces additional information for the machine to use in its
venture of understanding brain signals as well as lets the human adapt his mental
processes to be “understandable” by the machine. The proposed system allows
to identify mental states which will impact the classifier the most and which are
easily distinguishable by the machine. Once a set of such states is established, the
test subject can use it to control the system.

10

Chapter 1

Biological and Technological
Background

1.1 Electroencephalography

Throughout this thesis we work with data acquired using electroencephalography
(EEG). In this section we will see how this technology works and talk about the
signal it produces.

1.1.1 Biology of the human brain

There are special cells, called neurons, in our brain. These are electrically

Figure 1.1: Summation of postsynaptic
potentials. [Won10]

excitable cells that process and trans-
mit information via electrical and chemi-
cal signaling [ner]. The signals we try to
capture are generated by changes in the
electrical charge of the membrane of the
neuron. Neurons have a resting poten-
tial, which is the difference in the elec-
trical potential between the interior of a
cell and extracellular space. The rest-
ing potential fluctuates as a result of
the impulses arriving from other neurons
through synapses. Cell membrane con-
tains ion channels where ions of sodium,
potassium, chloride and calcium are con-
centrated during the chemical processes
in the cell. Concentration of ions creates cross-membrane voltage differ-
ences. Changes in the cross-membrane voltage generate postsynaptic poten-

11

tials, which cause electrical flow along the membrane and dendrites [Fis91].

Figure 1.2: Pyramidal cells [aud]

A neurons consists of a cell body, dendrites
and an axon. When a summated potential
at the trigger zone of the axon reaches the
threshold of –43 mV (can vary), it fires the
axon by generating an action potential of
+30 mV that goes along the axon to release
the transmitters at the end of it (see Figure
1.1). When a summated potential is below
the threshold, the axon rests. This summa-
tion can be observed well at the vertically
oriented pyramidal cells (Figure 1.2) of the
cerebral cortex due to following properties
of these cells:

• The dendrites of the pyramidal cells extend through nearly all layers of the
cortex, guiding the flow of currents generated by postsynaptic potentials
from the deep layers to the more superficial ones.

• These cells are closely packed and oriented parallel to each other, facilitating
spatial summation of the currents generated by each neuron.

• Groups of these neurons receive similar input and respond to it with poten-
tials of similar direction and timing.

Despite the fact that most of the currents remain inside the cortex, small fraction
penetrates to the scalp, where it causes different parts of the scalp to have different
electric potentials. These differences, having amplitudes of usually 10-100 µV are
detected by electrodes and constitute the electroencephalogram (EEG).

There are different types of neurons in the brain, and about 20 major types of spik-
ing activity [dB05]. Most of those spiking patterns are periodic [Izh03]. This fact
makes it reasonable to decompose the raw EEG signal into frequency components
as we will show in Section 1.2.

1.1.2 EEG technology

By observing differences between electrical signals coming from the different loca-
tions on the scalp, we can monitor brain activity, see which parts of the brain are
active during different types of activities, and how high the activity is.

EEG mainly reads postsynaptic potentials, which are relatively sustained (a po-
tential persists up to 100 ms). The action potentials (actual neuron firings) are
very brief (1 ms) and their electrical contribution is small, so we cannot track
them on the EEG. If we could be able to see exact moments when a neuron sends

12

Figure 1.3: Two electrodes on scalp areas with dif-
ferent electric potentials produce the signal. [Fis91]

the signal, we would obtain
much more information about
the processes in the brain.

As we have mentioned before,
electrodes read potentials, so
we can see differences between
them. Usually there is one
or several reference electrodes,
which are placed on the most
electrically stable areas, such
as nose or ears. Other elec-
trodes’ potentials are being compared with the reference ones.

1.1.3 EEG signal

An EEG signal consists of time series of fluctuating electrical potential (µV) on
several channels. Each channel represents an electrode placed on the head. Each
EEG machine has a certain sampling rate, which indicates how many changes per
second the outgoing signal can carry. We work with the Emotiv EPOC [Emo12].
It has a sampling rate of 128 Hz, 14 usual and 2 reference electrodes. Figure 1.4
demonstrates 1000 samples (7.8 seconds) of the raw signal on 14 channels.

0 1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Time (sec)

C
h
a
n
n
e
l

8 seconds of EEG signal

Figure 1.4: EEG data: 14 channels, 8 sec-
onds, 128 samples per second.

The mental state of the test subject will
vary over time, therefore we need to
represent the signal in such way that
different moments (or periods) of time
will constitute separate instances in the
resulting dataset. The näıve represen-
tation would be to take each time point
of the data sample and compose the in-
stance as voltage reading on each chan-
nel. One such instance would be repre-
sented with a 14-element vector. How-

ever, such representation will loose valuable periodic information, which, as we
will see, characterizes brain signals.

As we have seen in Section 1.1.1, neuron fires periodically and, depending on the
type of activity, the firing periodicity changes. When the brain region is involved
in a certain kind of activity, then all the neurons in this region fire with the
same periodicity [GPD85] and those joint fluctuations are reflected in the signal.
According to frequency, brain waves are classified into several groups, which are
believed to correspond to specific types of activity each [LdS91]. Table 1.1 briefly
lists basic types of brain waves and examples of respective activities.

13

Name Type of activity
Delta
up to 4 Hz

• Adult’s slow wave sleep
• Babies’ brain activity
• Continuous attention tasks [KABG+06]

Theta
4–8 Hz

• Brain activity of young children
• Drowsiness or arousal
• Idling
• Person is actively trying to repress a response or ac-
tion [KABG+06]

Alpha
8–13 Hz

• Wakeful relaxation
• Eyes are closed
• Inhibition of areas of the cortex not in use, plays an active role
in network coordination and communication. [PP07]

Mu
8–13 Hz

• Appears in resting neurons responsible for motor activity

Beta
13–30 Hz

• Alert
• Active, anxious thinking, concentration
• Work

Gamma
30–100+ Hz

• Cross-modal sensory processing (perception that
combines two different senses, such as sound and
sight) [KC06] [KSO07] [NYC04]
• Appears during short term memory matching of recognized
objects, sounds, or tactile sensations [HFL10]

Table 1.1: Basic frequency ranges and corresponding activity types.

In this context, the time–frequency representation looks like a natural choice, since
it allows us to see which frequency components are present in the signal at certain
time points. One way to convert a time series to the time-frequency domain
is the windowed Fourier transform, which decomposes the signal into periodic
components.

1.2 Fourier Transform

The frequency representation of a signal xt where t = {0, . . . , N − 1} is computed
using the Fourier transform as follows:

Xk =
N−1∑
t=0

xte
−i2πk t

N (1.1)

where N is the total number of samples, k is the frequency under investigation,
and Xk is the energy of frequency k in the signal.

Listing 1.1 provides Matlab code to compute the Fourier transform explicitly on

14

Listing 1.1: Fourier toy example

1 % Generate signal: 1 second , 128Hz , sinusoid at 20Hz

2 timepoints = 0:0.0078:0.9922;

3 signal = sin(2 * pi * 20 * timepoints);

4

5 % Prepare vectors

6 time = 1: length(timepoints);

7 frac = time / length(timepoints);

8 freqs = zeros (1 ,50);

9

10 % Perform Fourier transform

11 for w = 1:50

12 component = sum(signal .* (exp (1) .^ (-i * 2 * pi * w * frac)));

13 freqs(w) = sqrt(real(component)^2 + imag(component)^2);

14 end

15

16 % Show result

17 bar(freqs)

a toy example. Figure 1.5 shows the initial signal and the frequency components
detected in the signal by the transform.

0 50 100 150
−1

−0.5

0

0.5

1

Time (sample)
0 10 20 30 40 50 60

0

20

40

60

80

Component (Hz)

E
n

e
rg

y

Figure 1.5: Raw signal (on the left) and its decomposition into periodic components
using Fourier transform.

To compute the time-frequency representation of a signal we split it into windows
and compute the Fourier transform of each window. Figure 1.6 presents the result.
This is the representation of a signal we will use throughout this thesis. The rows
are frequency components and the columns are points of time where the transform
was applied.

Figure 1.6: Time-frequency domain representation of the EEG signal from Figure 1.4,
window length is 0.3 sec.

15

1.3 Machine Learning

Machine learning is a branch of computer science, that studies algorithms, which
are capable of learning from data. The data is represented as a set of samples.
Each sample is a vector of features, which describes the sample’s characteristics,
and a label, which identifies to which class the data sample belongs. The ultimate
goal is to find a function (also called the model), which will be able to map
samples from the feature space to the label space. In other words, an algorithm
will find dependencies between features and labels, represent those dependencies
as a model and using this model the algorithm will be able to correctly classify
new data samples, which were not part of the training data.

1.3.1 Supervised and unsupervised learning

There are two major branches of machine learning: supervised and unsupervised.

Supervised learning. Supervised learning relies on labeled data samples. To
create a model, a supervised learning algorithm requires some amount of training
data, where each sample has the correct label. Formally, given a dataset D =
{(x1, y1), . . . , (xn, yn)} of labeled points (where xi are the feature vectors and yi
are the labels), a learning algorithm produces a function

f(xi)→ y

In some cases it is more convenient to use the probabilistic prediction function

f(xi)→ p

where p is a vector of probabilities, where for each class c we have the probability
that vector x will be classified as class c.

Unsupervised learning. This family of algorithms uses samples without labels
as an input. These algorithms analyze the internal structure of the data and based
on it assign data samples to different clusters. This is achieved by measuring
distance between the samples in the feature space using various kinds of similarity
measures and placing similar samples in the same cluster.

In our case each sample is a vector of length cf , where c is the number of channels
in the raw signal and f is number of frequency components we take from the
Fourier transform of each channel. In this thesis we will use c = 14 and f = 25
(frequencies from 1 to 50 Hz grouped into 2Hz bins), therefore the dimensionality
of our samples is 350.

In this section we give a high level description of three supervised learning classi-
fication algorithms:

16

• Support Vector Machines (SVM)
• Näıve Bayes Classifier
• Decision Tree Classifier

and two unsupervised learning algorithms (clustering algorithms):

• Self-Organizing Maps (SOM)
• K-means

that we use in our work.

1.3.2 Support vector machines

Support Vector Machine (SVM) [CV95] is a supervised linear classifier learning al-
gorithm. The idea of the algorithm is to find a linear separation boundary between
the samples, which correctly separates instances of different classes and has the

Figure 1.7: Maximal margin plane
separating two classes. Samples ly-
ing on the boundaries of the sepa-
ration plane are called support vec-
tors.

maximal margin – distance from the separat-
ing boundary to the closest training sample (see
Figure 1.7).

Support vector machines can also work in non-
linear spaces. This is achieved by transform-
ing the instance space using nonlinear mapping.
With a nonlinear mapping a straight line in the
new space corresponds to a nonlinear bound-
ary in the original space. In such way a linear
model constructed in the new space can rep-
resent a nonlinear model in the original space
[WF05].

For efficient SVM implementation we used
a Matlab toolbox based on the libsvm li-
brary [CL11].

1.3.3 Näıve Bayes classifier

The Näıve Bayes classifier algorithm is an example of a statistical modeling tech-
nique.

The method [FGG97] is based on the Bayes formula of conditional probability

Pr[A|B] =
Pr[B|A] · Pr[A]

Pr[B]
(1.2)

Let x be the vector of attributes (x1, x2, . . . , xn) and y be the class of an instance.
Then, by applying the formula (1.2) we express the probability that instance x

17

belongs to class y as

Pr[y|x] =
P [x|y] · Pr[y]

Pr[x]
∝ Pr[x|y] · Pr[y], (1.3)

(we can drop the denominator, because we can normalize the probabilities of
all attributes to sum to 1). If we now assume conditional independence of the
attributes, then

Pr[x|y] · Pr[y] = Pr[x1|y] · Pr[x2|y] · . . . · Pr[xn|y] · Pr[y], (1.4)

where Pr[xi|y] can be estimated from the training data.

The conditional independence assumption is where the term “näıve” comes from.
In reality, features usually are correlated with each other. But this assumption
gives us a simple model that often performs surprisingly well [WF05].

We used the Matlab built-in implementation of the Näıve Bayes classifier.

1.3.4 Decision tree classifier

A decision tree is a data structure, which consists of leaves, which are labelled with
a certain class and decision nodes, which describe branching conditions based on
the features from the feature space. A decision tree learning algorithm constructs
the tree from the data. The algorithm uses entropy for choosing the branching
feature at each of the nodes. The feature, separation along which results in the
largest information gain, is chosen to be the branching criterion. Information
gain and entropies are being calculated based on the training data provided to the
algorithm.

Figure 1.8: Toy example of a decision
tree [tre].

After the tree structure is complete,
classification of new data samples can
be performed. Each sample is propa-
gated along the tree until it reaches any
of the leaves. At each node of the tree
certain feature of the data sample is
tested according to the branching con-
dition of the node. The result of this
test determines along which path of the
tree the current data sample will move
afterwards.

We used the Matlab built-in implemen-
tation of the decision tree classifier, which is based on the C4.5 algorithm [Qui93].

18

1.3.5 Self-organizing maps

A self-organizing map (SOM) [Koh82] is a collection of m units organized into
a multidimensional rectangular grid. Most commonly (and also in this work) a
two-dimensional grid is used. To each unit is assigned vector w(u) ∈ Rd, where d
is the dimensionality of the data.

Initializing the map

The first step is to decide on the map size and ratios of the map sides. In the
technical report for the SOM Toolbox [VHAP00] authors estimate size of the map
using formula 5n0.54321, where n is the number of samples in the training set. Since
there is no explanation about how they came up with this number we assume that
it was either picked at random or empirically estimated.

Once the number of units is established we choose the structure of the map. Again,
according to [VHAP00] the ratio of the sidelengths of the map should be based
on the ratio between two biggest eigenvalues of the covariance matrix of the data.
Keeping this property in mind the sidelengths are set so that their product is as
close to the estimated number of units as possible. This is essentially the same
as taking the two first principal components of the training data. Such choice is
motivated by the fact that the two axes of the resulting map will account for as
much variance of the data as possible.

After the map is created, each map unit is initialized to the 0 vector. Now the
main phase of the algorithm starts, during which the map will update weigth
vectors according to the incoming data.

Updating weight vectors

Definition 1.1. The best matching unit (BMU) for a data sample x is a unit u,
whose weight vector w(u), which is closest to x:

BMU(x) = argmin
u∈{1...m}

distance(w(u),x) (1.5)

Usually euclidean distance is used as the distance measure:

distance(w,x) =

|x|∑
i=1

(xi −wi)
2 (1.6)

After the BMU for the incoming data sample is established we update the map.
This procedure is explained by Equation (1.7), where u is a unit of the map, w(u)
is the weight vector, which is assigned to u and which we are going to update with

19

respect to the new data, s is the number of the current iteration and xt is the
incoming data vector.

w(u)s+1 = w(u)s + Θ(BMU, u, s)α(s)(xt −w(u)s) (1.7)

Figure 1.9: Mapping between vec-
tors in the feature space and SOM
units. [som]

The update is repeated for each itera-
tion (1, . . . , λ), for each input data vector
(x1, . . . ,xn) in the training set and for each
unit in the map (u1, . . . , um). In total this
procedure is being repeated up to λnm times,
where λ is the iteration limit, n is the num-
ber of samples in the training data and m is
the size of the map. Not all units are updated
with each new input vector, furthermore, not
all units among the updated ones are updated
equally. There are two functions in Equation
(1.7), which are responsible for deciding which
units will be updated and how much. Θ(b, u, s)
is called the neighborhood function, it deter-
mines to what extent unit u is neighbor of b:

for b itself Θ(b, b, s) = 1 and for some unit u, which is too far away to be consid-
ered to be a neighbor of b Θ(b, u, s) = 0. The parameter s is used to decrease the
number of neighbors on later iterations. The function α(s) can be interpreted as
learning rate. It also takes the current iteration as a parameter and uses that do
decrease with time the influence that new samples have on the weight vectors.

At the end of this process units of the resulting map represent centers of the data
clusters. Each new data sample is likely to be assigned to the cluster, which is
“populated” by similar samples. A second important property of the final map is
that some units are closer to each other, and the distance between them (i.e. their
weight vectors) indicates the distance between the cluster centers in the feature
space.

SOM Toolbox

The self-organizing map implementation is taken from the SOM Toolbox [VHAP00],
which is created by a research group at Helsinki University of Technology, the same
university where SOM was invented.

1.3.6 K-means

K-means [M+67], is a simple clustering algorithm that can serve as the counterpart
for SOM and be our point of reference when analyzing complexity of the EEG

20

signal. Here is a high level description of the steps this algorithm makes in order
to separate the data into clusters:

1. Start by selecting k random vectors in the data space, where k is the number
of clusters we want to identify. These vectors are called cluster centers.

2. Each data sample is assigned to closest cluster center.

3. For each cluster, we update the cluster center to be the average of all the
samples assigned to the cluster.

4. Step 2 and 3 are repeated until convergence (i.e. until cluster centers do not
change).

1.3.7 Performance evaluation

In the field of machine learning model performance is evaluated on the so-called
test data. This is a set of data samples, which were collected separately from
the training data. Samples from the test set are labelled in the same way as the
training data samples are, but we will not give those labels to the algorithm this
time. Algorithm should use the model it created from the training data to predict
the label for the test set. After that we compare predicted labels with the actual
ones and estimate model accuracy.

Figure 1.10: Visualization of the
example of a confusion matrix.

One way of keeping track of the model’s suc-
cesses and failures is the confusion matrix.
Data samples, which are classified correctly by
the model, contribute to the main diagonal on
the confusion matrix. All misclassified samples
introduce numbers off the main diagonal.

Definition 1.2. A confusion matrix M is an in-
teger matrix of size a×a where a is the number
of classes. Number Mij indicates the number of

times a test instance, whose true label is i was classified by the model as belonging
to class j.

In our work we will use a modification of the confusion matrix, which we call a
probabilistic confusion matrix.

Definition 1.3. A probabilistic confusion matrix is a matrix M ∈ Rn×n, where n
is the number of actions. For a dataset D = {(x1, y1), . . . , (xn, yn)} we define the
probabilistic confusion matrix as

Mij =
∑

x∈D,y=i

f(x)j

where f(x) is the probabilistic prediction function described in Section 1.3.1.

21

There are three numbers, which can be calculated using the matrix and which we
use to characterize model performance:

Precision is a fraction of samples correctly identified as a class c among all sam-
ples identified as a class c:

Precisionp =
Mpp∑

a∈classes

Map

. (1.8)

Recall is a fraction of samples of class c correctly identified as such:

Recalla =
Maa∑

p∈classes

Map

. (1.9)

F1-score is the harmonic mean of precision and recall. This measure allows us
to represent model performance as one number:

F-scorec = 2 · Precisionc · Recallc
Precisionc + Recallc

. (1.10)

Each measure is computed for each class. Since we can have more than two classes
in out data sets, we take a weighted average of F1-scores to describe the whole
model’s performance. We compute weights of actions in the confusion matrix
as shown in Equation (1.11) and calculate dot product of weights and F1-scores
(1.12).

Weighta =

∑
p∈classes

Map∑
i∈classes

∑
j∈classes

Mij

(1.11)

Weighted F-score =
∑

c∈classes

Weightc · F-scorec (1.12)

The resulting number reflects how well the model performs.

1.3.8 Principal component analysis

Principal Component Analysis (PCA) is a method dating as far back as 1901 [Pea01].
It allows to transform data points from one feature space to another and gain useful
properties along the way. In the original space, features can be linearly correlated

22

to each other. PCA aims at transforming the data so that the new features are
linearly uncorrelated. Those features are called principal components. The first
principal component will account for as much of the variability in the data as
possible. The second component has to be orthogonal to the first one and also ac-
count for as much variability as possible under the orthogonality constraint. Each
following component obeys the same rule.

The result of PCA provides us with following useful information:

• By looking at several first principal components of data samples for particu-
lar class we can understand whether the data features are highly correlated
or not, which gives an abstract understanding of the complexity of the data.

• We can reduce dimensionality of the feature space by taking only as many
features as needed to account for enough variance in the data. In many
cases this number can be considerably smaller than the initial number of
dimensions in the original feature space.

23

24

Chapter 2

Emotiv EPOC and EEG Signal

In this chapter we describe the device we use in our work and study the properties
of the signal this device is capable of producing. After that we demonstrate why
solving the task of classification of mental states is hard by looking at some real
examples of the data.

2.1 Emotiv EPOC

Figure 2.1: Emotiv EPOC electrode place-
ment according to the 10-20 system.

Real data experiments were conducted
using the Emotiv EPOC R© [Emo12].
The device has 14 electrodes and 2 ref-
erence channels. Figure 2.1 shows elec-
trode placement according to the In-
ternational System of Electrode Place-
ment (10-20 System) [TBS+93].

Table 2.1 shows Emotiv EPOC param-
eters according to the vendor documen-
tation [emo] and compares those pa-
rameters with a high-end EEG device
BioSemi ActiveTwo R© [VRPG90].

Emotiv EPOC BioSemi ActiveTwo
Sampling rate 128 Hz 16384 Hz
ADC error margin 0.51µV 31 nV
Frequency bandwidth 0.2 – 45 Hz up to 3200 Hz

Table 2.1: Comparison of the Emotiv EPOC and Biosemi ActiveTwo EEG devices.
ADC stands for analog-to-digital converter.

As we see Emotiv EPOC is a far less sophisticated device and we may assume

25

that the quality of the signal is also quite low. However, there are a few features
which make Emotiv EPOC attractive:

• Low cost allows end users to acquire this device for personal use,

• Portability makes it possible to conduct studies outside the laboratory.

If we would be able to achieve reasonable classification accuracy levels with this
device, we could extend areas of applications of BCI technology.

2.2 Signal Consistency

As we mentioned in Section 1.3, we represent each data sample by the concatenated
vector of frequencies from each channel. We have 14 channels in the data, and

Figure 2.2: 10 seconds of real EEG data dur-
ing same mental state.

we are interested in frequency range
from 1Hz to 50Hz, which we group into
2 Hz bins. This gives us 25 features to
describe each channel, so our sample
belongs to a 14×25 = 350-dimensional
space.

For each data sample our goal is to de-
tect in which one of the fixed number of
mental states the test subject was when
he produced the sample. We must do
so solely by analyzing the signal repre-
sentation (position of the sample in the
feature space). The test subject’s task
is to produce similar brain activity each
time he is engaged in a certain mental
state. In other words, signal represen-
tation of any two time moments when the test subject was thinking “left” must
be similar to each other.

Definition 2.1. Intentional attempt to sustain stable brain activity will be re-
ferred to as mental state.

Figure 2.2 gives an example of real EEG data processed as described in Section
1.2. The picture demonstrates the signal, obtained during 10 seconds when the
test subject tried to think “left”. We can see from the signal that almost each
next sample somewhat differs from previous one. One particular picture can be
unconvincing, but according to our studies this is the general case, that signal
produced by the test subject in response to the same stimulus can be very different,
which makes is hard for an algorithm to identify the stimulus from the signal.

26

This is our first problem, the inconsistency of the signal. The source of this
problem is the test subject’s inability to produce similar brain activity for similar
mental tasks. One can overcome the issue via excessive learning: given long enough
time the test subject can learn to think in the right way. Efficiency of the learning
process then naturally becomes one of the bottlenecks of the system as a whole.

2.3 Signal Distribution Over Different Mental

States

Signal samples can be quite different for the same mental state. This natu-
rally leads to an idea that if they are all different, we might be able to map

Figure 2.3: Averaged frequency en-
ergies for 3 different mental states.

each of them to a certain action. In such case
actions would be described by non-intersecting
sets of signals and the only thing a learning
algorithm would have to do is to divide signals
into sets according to actions.

Definition 2.2. An action is the desired be-
havior of a BCI system that the test subject is
trying to trigger by sustaining the approproate
mental state.

For this idea to work we expect that signals
produced for different mental states would end
up in different sets. Let us investigate this as-
sumption. Figure 2.3 shows averaged frequency
energies over 1000 samples for each of the three

mental states. We see that they are not exactly equal, which gives us some hope,
but we also see that they are very similar to each other. This suggests that dividing
samples into several disjoint sets may be difficult.

We used SOM to separate mental states into different clusters. On the left side
of Figure 2.4 is the map built on the artificial data where we introduced three
distinguishable signals into randomly generated EEG-like data [YBHC04]. We
can see the formation of three distinct clusters in the corners of the map. On
the right side of the figure we see the result of applying the exactly same method
to real data. What we see is consistent with conclusions we made before – the
task of distinguishing mental states is far from trivial. Currently, SOM tends to
put all samples from the test subject’s brain into the same place, since they are
very similar. Our task will be to teach the test subject to produce as different
mental states as possible and at the same time adapt the SOM to handle data
with high level of internal similarity. This leads us to our second problem: the test
subject can not produce distinguishable mental states. However, it is known that

27

Three mental states: Artificial data Three mental states: Real data

Figure 2.4: Applying self-organizing map on artificial and real data to separate samples
from different mental states.

prolonged training makes it possible [SE05]. This again makes learning process
the cornerstone of system efficiency.

2.4 Empirical Estimations of Complexity of Real

Data

2.4.1 Comparing SOM and K-means on real data

In most cases of unsupervised learning problems, simpler algorithms such as k-
means can yield good results. However, EEG data seems to fall into the category
of data with a more complex internal structure.

We performed two clusterings on the same dataset (12000 samples) using K-means
and SOM. For both methods we computed clustering matrices, where rows are
actual clusters given by the labels and columns are the clusters algorithm assigned
data samples into.

 3890 0 0
0 3800 0
0 0 4796

 0 3890 0
0 3800 0
7 4783 6

 3141 511 238
3151 443 206
3931 586 279

This matrix represents actual
cluster distribution.

K-means. The algorithm was
not able to separate the data:
almost all samples are clus-
tered into the second cluster.

SOM. Most of the data sam-
ples are clustered into same
cluster as well, but other clus-
ters also received small por-
tion of the data samples.

Based on these results we decided to use SOM as primary clustering algorithm in

28

our system.

2.4.2 Analyzing principal components

Additional way to visually access the complexity of the data is provided by Prin-
cipal Component Analysis (PCA).

On Figure 2.5 we can see the first three principal components of the data. We can
see that neither of the components describes any of the three classes (represented
by colors).

10
1

10
2

10
3

10
4

10
5

10
2

10
3

10
4

10
5

10
−2

10
0

10
2

1st PC2nd PC

3
n

d
 P

C

Figure 2.5: Three first principal components of the real data. All axes are in logarithmic
scale.

29

30

Chapter 3

Adaptive Interactive Learning: A
Novel Approach to BCI Training

3.1 Traditional BCI Training

The term “Brain-Computer Interface” denotes a wide variety of systems in which
a computer and a human brain are connected in some way and exchange infor-
mation. The most common meaning implies a computer which tries to perform
some actions based on the information coming from the brain. We assume that
a test subject, who is producing the signal, purposefully tries to tell the computer
to perform a certain action. Relying on that assumption, the computer tries to
identify which action should be performed to satisfy the test subject.

The common pipeline for training a Brain-Computer Interface is the following:

1. Signal retrieval is a step where quality and possibilities of the hardware play
an important role.

2. Signal pre-processing, during which various types of feature extraction ap-
proaches are attempted in order to find the best suitable one. This step is
rather data-specific, the methods which work well for a particular dataset
can work worse for an other one.

3. Classification. Labelled instances of the signal are given to an algorithm
to create a model. The variety of methods used here is enormous, but the
high-level idea of the whole process is the asame.

Usually, improving BCI performance is attempted by trying different classification
algorithms, adjusting algorithm parameters, changing feature extraction methods
and so on. Most of the methods rely on the supervised learning paradigm. In this

31

Figure 3.1: Illustration of traditional machine learning approach.

work we will refer to it as the traditional method, as a counterpart to the approach
we propose.

Over the recent 20 or so years numerous approaches have been proposed for EEG
signal classification for BCI systems. Table 3.1 describes the classification task
the different authors were trying to solve, information on the hardware they have
used, classification method they applied, test subject’s training period and the
achieved result.
There also exists a quite extensive review paper [LCL+07] on classification algo-
rithms for EEG-based BCI. According to the summary presented there, the state
of the art accuracy of mental state classification is ≈ 0.8 for two-class tasks and
≈ 0.7 for three-class tasks.

Despite the usage of elaborate algorithms and plenty of experimental data, test
subjects still have difficulties controlling BCI systems even with small numbers of
mental states.

3.2 The Novel Approach

A typical question one can hear from the test subject is “How should I think?”.
This is a natural question, which is also a source of scientific debate. Indeed, which
kind of mental activity produces the most recognizable signals? Some [HKI09]
propose that the test subject can provide the best feedback by imagining motor
activity. Thinking of moving one’s left arm can be detected by the learning al-
gorithm more easily than the attempt to imagine some abstract notion of “left”.
Another approach is to come up with thoughts from different domains: recall-
ing an image of something, imaging muscle tension, performing calculations in the
mind, experience anger, recalling certain piece of music, etc. Since functional roles
of the different areas of the brain are believed to be different [HIT+03] [GFF+93]
[BKM+91], thus triggering listed types of mental activities will result in increasing
brain activity in different areas, which can be detected by the machine and there-

32

Classification task Device Method Period Results
Distal or proximal movement of
body parts (finger, shoulder): 2
classes [ŠSS03]

- HMM - Accuracy
0.8

Imagining left or right hand move-
ments: 2 classes [LC02]

- PCA,
HMM,
LDS

- Accuracy
0.775

Hand opening, closing + neutral: 3
classes [EE04]

256 Ag/AgCl
electrodes

ICA 30 days Accuracy
0.85

Imagining motor activity, left, right in-
dex finger, foot: 3 classes [MGPF99]

128 Hz, 56
Ag/AgCl elec-
trodes, 0.15 -
60 Hz

Common
Spatial
Filters

1 hour Accuracy
0.89

Left and right: 2 classes [HP00] - Time-
dependent
NN

1 hour 0.86

Left and right: 2 classes [TGP04] 128 Hz, 0 - 50
Hz

Graz-
BCI [PNG+00]

- AUC
0.81

Left and right: 2 classes [PKN+96] - NN 2 days Accuracy
0.89

Left and right index finger movement:
2 classes [GEV03]

128 Hz SVM - Accuracy
0.86

Left hand, right hand, foot imaginary
movements: 3 classes [TAM07]

1000 Hz, 128
electrodes

Logistic
Regres-
sion

- Accuracy
≈ 0.5

Table 3.1: List of several articles where classification of the EEG data was attempted.
HMM is Hidden Markov Models, PCA is Principal Component Analysis, LDS is Linear
Dynamic System, ICA is Independent Component Analysis, NN is Neural Network,
AUC is Area Under Curve, SVM is Support Vector Machines.

fore used to differentiate between mental states. There are studies indicating that
certain types of activity suits BCI purposes better than other [CS03], however
those results cannot be extrapolated to every human being and not everyone will
be able to adopt specified mental activities to use them as triggers for the certain
actions of the machine under control.

This leaves us with the necessity to explore each test subject’s mental state space
separately to be able to find suitable thoughts. This process is usually disguised
inside the learning phase and is performed by the method of trial and error: the
test subject blindly makes attempts to satisfy the machine.

In this thesis we propose a scheme, which analyzes the test subject’s brain activity
in real time and assists him in finding out which mental states are suitable and
which are not. We see the learning process not as a one-directional flow of infor-
mation from the brain to the machine, but as a duplex interaction scheme, during
which both parties adapt their behavior depending on the received feedback. In
the process of exploring the test subject’s mental state space our system also cre-
ates a predictive model, which can be used in BCI. We will refer to our approach
as the adaptive method, since the test subject and the algorithm can adapt their

33

behavior in real time.

3.2.1 Interactive adaptive learning

As the name suggests, our scheme facilitates interaction between the human and
the machine and allows them to adapt with respect to the information gained
through interaction. Human sends out his brain signal in response to the stimulus
provided by the machine, receives the feedback about how successful his mental
efforts are and tries to adapt them accordingly. The machine creates a predictive
model, monitors the incoming signal with respect to the model, and, depending
on the results, provides the feedback, updates the predictive model and makes the
decision if the model became inadequate and must be recomputed to incorporate
latest data from the human.

Figure 3.2: Illustration of interactive learning approach.

In the next sections we describe our realization of the interactive learning approach.

3.2.2 Predictive SOM

In our approach we rely on an extension to SOM which we refer to as Predictive
SOM. Predictive SOM is built in the same way as the usual SOM described in
Section 1.3.5, but each unit of the map has an additional vector p(u) ∈ Ra where
a is the number of actions. This vector holds action probability distribution for
the unit u. It shows what is the probability that a signal x, which was classified
into unit u, has been produced in response to the action a.

34

Initialization

The only parameter we have to decide on is the size of the map. A map too small
will not be able to incorporate a sufficient variety of mental states, causing quite
different mental efforts to be classified into the same unit. A map too large will
distribute the data sample too thinly and will consider even quite similar signals
to originate from different mental states. By running the simulation with the
different sizes of the map we empirically estimated that the adequate size of the

Figure 3.3: SOM with additional probability
vectors.

map should be calculated as 10 · a,
where a is number of actions (stimuli)
we are going to train.

Update procedure

In predictive SOM there are two sets of
vectors to update. Each unit’s weight
vector w(u) is updated as described
in Section 1.3.5. Vectors p(u) are up-
dated as follows:

ps+1(u) = ps(u)(1− α) + cα (3.1)

where s is iteration number, α ∈ (0, 1)
is a parameter, which specifies how fast
the contribution of the older data sam-
ples deteriorates, and c is a bit vector,
where for each class we have value 0 or
1. There can be only one non-zero value in the vector c and its position indicates
the actual class.

Classification procedure

The probability vector p(u) can be used for classification. For a sample x we want
to classify, we identify SOM’s BMU (best matching unit, see Definition 1.1) u for
this sample, and predict the class of this sample by choosing the most probable
class in the vector p(u). We can also regard probabilistic SOM as a probabilistic
prediction model, where the prediction for sample x is a probability distribution
over all possible classes.

35

3.2.3 Implementation of the interactive training
process

The process starts by recording the test subject’s brain signal for a fixed short
period of time. Then the signal is transformed as described in Section 1.1.3. This
initial data is used to create the initial SOM as discussed in Section 1.3.5. The
probability vectors p(u) are initialized with uniform distribution.

After that the main phase of the learning process begins. The system shows
sequences of stimuli to the test subject. Each stimulus is shown for a fixed period of
time, during which several data samples are recorded and processed. Each sample
is classified according to the existing model and the feedback is shown to the test
subject. Figure 3.4 demonstrates the signal processing step and shows how the
feedback message is produced in both successful (green) case, and misclassification
(red) case.

Figure 3.4: Sample classification pipeline. Path in the case of a correctly classified
sample is show in green, a misclassified sample case in red.

As the new sample x for action a arrives, predictive SOM classifies it into unit u
and reports success if p(u)a = max(p(u)) and collision otherwise. Feedback f is
a number in the range from 0 to 1 and f = p(u)a. If the estimated probability of
action a hitting unit u is high then we report a high score, since the test subject
was able to produce a suitable data sample and the machine correctly assigned a
SOM unit to it. If the probability is low, then either the test subject evoked a
mental state, which is not suitable or the machine has misclassified the sample.

Evaluating model performance

Model’s performance is being tracked using a probabilistic confusion matrix C as
described in Section 1.3.7. The probability vector p(u) is added to the a’th row
of the confusion matrix, where a is the stimulus, which was shown to the test
subject. After the system has shown the stimulus for the action a to the test

36

subject, he produces a signal s. Figure 3.4 illustrates the confusion matrix update
procedure. In case of a correct prediction the matrix update Ca = Ca + p(u)
mostly contributes to the main diagonal of the confusion matrix and the overall
F1 score grows. In the case of misclassification the biggest contribution goes off
the main diagonal, which brings the F1 score down.

Examples below demonstrate the effect on the confusion matrix and the resulting
F1 score in three major cases:

a) Random: unit u receives approximately almost same amount of
samples from actions other than action a.
Assume that we have 3 actions in total, a = 3 and a unit’s u action distribu-
tion vector p(u) =

(
1
3
, 1
3
, 1
3

)
. Assume the current confusion matrix and F1

score are

F1

 10 2 1
1 8 2
1 2 10

 = 0.7582 .

Now we add p(u) to the a’th row of the probabilistic confusion matrix:

F1

 10 2 1
1 8 2

1.33 2.33 10.33

 = 0.7472 .

Adding 1
3

to main diagonal will make the score better, but at the same time
it will be also penalized for the fact that this is a pure accident and with the
same chance the update could have happened off the main diagonal.

b) Misclassification: almost none of the samples that unit u receives
are produced during action (stimulus) a.
This time the signal s for action a was put into unit u, where it has been
never put before and which is associated with by other actions. Vector p(u)
in this case is

(
9
10
, 1
10
, 0
)

and the resulting confusion matrix after update is

F1

 10 2 1
1 8 2

1.9 2.1 10

 = 0.7376 .

We see that F1 score decreased more than in the previous case.

c) Correct prediction: most of the samples unit u receives are pro-
duced during action (stimulus) a.
This is a positive example, the vector p(u) =

(
1
10
, 0, 9

10

)
and updating the

third row of the confusion matrix makes the F1 score larger:

F1

 10 2 1
1 8 2

1.1 2 10.9

 = 0.7618 .

37

To get a better picture during training, we track two slightly different confusion
matrices.

The overall confusion matrix W is computed from all the samples processed
since the last update of the model. It thus reflects the global situation. When
the F1 score of this matrix drops below the threshold we consider the model to
be inadequate and rebuild it using all new data accumulated during the learning
process. It is important to mention, that since SOM does not rely on the labels of
the instances, the test subject can freely investigate his mental states space, with
no danger of producing “wrong” data samples.

The recent confusion matrix R remembers only the results from the fixed
number of last data samples. It reflect the more recent situation. This matrix
carries two functions:

1. By observing only recent performance we can finish the learning process as
soon as model becomes good enough and we do not have to wait until global
confusion matrix W will also reflect this fact.

2. When the system has to pick next stimulus to show to the test subject it
chooses the one, which has recently received less positive feedback than the
other stimuli.

Measuring the test subject’s performance

Conceptually, we can see the probability vectors p(u) as reflection of the test
subject’s efforts to explore his mental state space. On Figure 3.5 we visualize
an example of all probability vectors as one matrix where probability values are
coded with color.

Figure 3.5: Visualization of the probability vectors for predictive SOM with 3 actions
24 map units.

We were always talking about the action distribution in the units. Just as an
observation we would like to notice that, simultaneously, the unit distribution
over the actions is being formed in the process of learning. For example on Figure
3.5 action A will be represented by the units 5, 16 and 22; action B by the units
1, 4, 13 and 15; action C by the units 6, 11, 17 and 19.

38

Experimenter

The experimenter is the main GUI application, which incorporates all the logic
described in this section. It interacts with the test subject, shows stimuli, pro-
vides the feedback, tracks performance and makes decisions about recomputing the
model or entering evaluation phase when the model has achieved success threshold.
This later phase is also facilitated by the Experimenter.

Figure 3.6 demonstrates the Experimenter window during second phase. Top part
of the screen contains an instruction for the test subject. Most space is occupied
by the stimulus display. In the bottom part of the screen we can see the feedback
score, collided stimulus if there is one and the color gauge, which visualizes the
score.

Figure 3.6: Main window of the Experimenter application.

Real-time processing

All computations are made in real time facilitating transmission of relevant infor-
mation between human and machine and providing adaptive learning process. We
use Matlab R© as our primary development environment. This choice is justified
by the availability of powerful toolboxes for EEG signal processing designed for
use with Matlab. FieldTrip [OFMS11] is one of them. This toolbox has module
for communicating with the Emotiv EPOC. It allows to transmit data from the
device into Matlab environment in real time.

39

3.2.4 A scheme to summarize

The scheme on Figure 3.7 depicts all processes going on in the system. Time
flows from top to bottom, boxes contain states or milestone processes, arrows
denote transitions between the states. The transitions can be triggered by the
system internal logic, results of the calculations or by the instructions issued by
the graphic user interface (GUI) of the system.

Figure 3.7: Detailed diagram of the interaction scheme.

40

Chapter 4

Experiments on Artificial Data

Before we test our model on real data we would like to test and fine-tune it on
artificial data. In this section we describe how simulated experimental setup works
and how it helps to formalize our goals and assumptions.

4.1 Brain Signal Simulation

4.1.1 Generating EEG-like data

To generate data with noise and component composition similar to real EEG
readings we use supplementary material to [YBHC04], which includes Matlab code
of the EEG-like signal generator the authors used in their experiments. Artificial
data is being generated according to the Event Related Potentials theory – classical
theory on the nature of EEG signals [Luc05].

Figure 4.1 show a snapshot of a running 10-second spectrum window on channels
F3, P7 and T8.

Figure 4.1: Running spectrum of generated EEG-like data without mental states intro-
duced.

41

4.1.2 Introducing components into noisy data

In our simulation we exploited the abstract notion of mental state space, and
defined a fixed number of mental states the simulated “test subject” can use.
Mental states are defined by introducing 40 Hz sinusoidal component of amplitude
40 (same amplitude as the amplitude of the noise in the EEG signal generator)
into the predefined channels of the signal. Table 4.1 shows exactly which channels
are mapped to which mental states.

Area Channels Corresponding electrodes

0 All (noise only) 1-14
AF3, F7, F3, FC5, T7, P7, O1,

O2, P8, T8, FC6, F4, F8, AF4

1 Left frontal lobe 1-4 AF3, F7, F3, FC5

2 Frontal lobe 1-4, 11-14
AF3, F7, F3, FC5, FC6, F4, F8,

AF4

3 Right frontal lobe 11-14 FC6, F4, F8, AF4

4 Left hemisphere 1-7 AF3, F7, F3, FC5, T7, P7, O1

5 All 1-14
AF3, F7, F3, FC5, T7, P7, O1,

O2, P8, T8, FC6, F4, F8, AF4

6 Right hemisphere 8-14 O2, P8, T8, FC6, F4, F8, AF4

7 Left parietal and occipital lobes 5-7 T7, P7, O1

8 Parietal and occipital lobes 5-10 T7, P7, O1, O2, P8, T8

9 Right parietal and occipital lobes 8-10 O2, P8, T8

Table 4.1: Nine artificial mental states are defined by the channels where the sinusoidal
component will be introduced to.

Mental states can overlap, making it more complex for the machine to distinguish
between them. By overlapping we simulate existence of mental states, which can
seem different to the test subject, but actually are quite similar in terms of the
produced signal.

Figure 4.2: Running spectrum of generated EEG-like signal with introduced artificial
mental states.

On Figure 4.2 we can see the result of combining the generated signal from Section
4.1.1 and introduced components. During the first 5 seconds we activated mental
state 1, which introduces the components into the channels AF3, F7, F3, FC5.
As we can see, channel F3 indeed has elevated activity on frequency of 40 Hz.

42

During the last 5 seconds we activated mental state 9 and again the activity on
the 40 Hz band can be observed on the channel T8 as expected.

4.1.3 Generator

Figure 4.3: Generator GUI allows to introduce
mental states into the signal buffer.

The application, which implements
the process of generating EEG-like
signal and allows to manually ac-
tivate any of the mental states is
called Generator. We have as-
signed nine mental states described
in Section 4.1.2 to nine buttons,
which are numbered accordingly.
Figure 4.3 depicts the generator
application.

The generator writes the resulting
signal into the same signal buffer as
the Emotiv EPOC, which makes it
possible to use the simulated signal
with the Experimenter application.

Please see the Appendix A for the
instructions on how to run this ap-
plication.

4.2 Comparing Adap-

tive and Traditional Learning Methods in the Ar-

tificial Setting

The models created using different models can be evaluated based on the F1-
score (see Section 1.3.7). If we assume that mental states are separable, then
both models can achieve desired F1-score value if they are given enough data
and parameters are correct. We set up the success threshold and define the model
performance as a number of samples the model needs to process in order to achieve
this threshold.

Definition 4.1. Success threshold is a real number in the range 0 ≤ t ≤ 1. We
say that a model has achieved the desired performance if F1-score of the confusion
matrix is ≥ t.

Definition 4.2. Model performance is an average number of data samples that a
model requires in order to reach the success threshold.

43

4.3 Traditional Simulator

In this section we describe how we simulate the traditional approach and the
behavior of the test subject during the traditional learning process. We describe
the assumptions we made in order to be able to formalize the process and the
simulated test subject.

4.3.1 Simulating traditional behavior

The first thing the test subject has to do is to choose the potential mental states,
which he is able to consciously activate, switch between them and sustain for some
period of time. In Section 3.2 we have discussed the possible ways he can make
this decision. Regardless of the approach, the test subject will end up with a fixed
number of mental states and the mapping between them and the stimuli. It does
not matter, which mental states are mapped to which actions, therefore we can
make this choice randomly in each run of our simulation.

The simulated system has k = 3 actions {A,B,C}. The simulated test subject
has l = 9 mental states {m1, . . .m9} we have defined in Table 4.1. Each action is
associated with bk/lcmental states. Since the real test subject is not in full control
of the signal he emits, we allow overlaps in our simulation: the same mental state
can be assigned to one or more actions. An adaptive scheme would help to resolve
such an overlap, but in the traditional setting the test subject will not receive
the necessary information to do that. Table 4.2 gives an example of the mapping
between the actions and the mental states.

Mental states
m1 m2 m3 m4 m5 m6 m7 m8 m9

A
c
ti

o
n

s A A A
B B B

C C C

Table 4.2: Mental states {m1, . . . ,m9} are mapped to the actions {A,B,C}.

When the simulated test subject sees a stimulus a ∈ {A,B,C} he randomly choses
one of the mental states mapped to this action and produces the corresponding
signal.

4.3.2 Traditional simulator implementation

The traditional model will benefit from every piece of labelled data it can get. For
this reason we recompute the model not when it reaches the threshold, but on a
regular basis. In our implementation we chose to recompute the model after every
50 samples of new data.

44

Classification is done using SVM algorithm with parameters fine-tuned using pa-
rameter search.

The performance of the model is measured in terms of F1 score of the confusion
matrix. The matrix is being updated in a trivial manner: each correctly classified
sample adds 1 to the main diagonal, a misclassified sample adds 1 off the main
diagonal, into the cell Map where a is the index of the actual action and p is the
index of the predicted action.

Figure 4.4: In the traditional simulator each new data sample is treated as test sample
and after evaluation is added to the training set.

Usually, supervised learning algorithms are being evaluated on a separate data
set, called training set. In our implementation each new sample first is being
treated as a test sample, meaning that we evaluate the model using this sample
and after that the same sample with a correct label in being added to the training
set. Figure 4.4 illustrates this process.

Listing 4.1: Traditional Behavior Simulator: example output

1 Action 1

2 Picked mental state 7

3

4 Confusion matrix for whole lifetime of the most recent model

5 1 0 0

6 0 8 1

7 2 2 6

8

9 Last cycles confusion matrix

10 12 1 18

11 0 15 5

12 3 3 14

13

14 If 0.90000 < 0.58286 => Learning complete

15

16 Number of samples 95

17 Recompute counter 20

Listing 4.1 provides an example output of the traditional simulator. Line 1 shows
the stimulus, which is currently “shown” to the simulated test subject. Line 2

45

says which of the mental states was picked by the test subject in response to the
stimulus. The matrix on the lines 5-7 is a confusion matrix of the predictions
done since the last model update. The matrix on the lines 10-12 is the one, which
is used to calculate F1 score and decide whether the learning process is complete.

Please see Appendix A for instructions on how to run this application.

4.3.3 Results

Trivial case

First we perform the most simple type of an experiment, in which we do not add
EEG-like noise to the simulated data. Thus, the training data consists purely of
the introduced sinusoidal components. This trace is trivial, because it should be
very easy to classify the instances in such setting. However, as we mentioned in
Section 4.3.1, mental states overlap, which can make it difficult to distinguish one
from another. As we can see on Figure 4.5 the traditional simulator does not always
converge. This is the behavior we expected to get and a good illustration of the
issue we are facing in the real learning process: without feedback the test subject
does not know whether chosen mental states are adequate, and without adapting
his behavior he continues to produce non-classifiable samples, which leaves the
model in the state of stagnation no matter how many data samples are provided
to it. Few runs which do converge are the cases, where random initialization of
state-to-action mapping happened to assign distinguishable mental states to the
actions and, therefore, the model was able to discriminate.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5
0

 1
0
0

 1
5
0

 2
0
0

 2
5
0

 3
0
0

 3
5
0

 4
0
0

 4
5
0

 5
0
0

 5
5
0

 6
0
0

 6
5
0

 7
0
0

 7
5
0

 8
0
0

 8
5
0

 9
0
0

 9
5
0

1
0
0
0

1
0
5
0

1
1
0
0

1
1
5
0

1
2
0
0

1
2
5
0

1
3
0
0

1
3
5
0

1
4
0
0

1
4
5
0

1
5
0
0

1
5
5
0

1
6
0
0

1
6
5
0

1
7
0
0

1
7
5
0

1
8
0
0

1
8
5
0

1
9
0
0

1
9
5
0

2
0
0
0

2
0
5
0

2
1
0
0

2
1
5
0

F
1

 s
c
o

re

Figure 4.5: Model performance and trace of the changes in F1 score for the traditional
simulator on noiseless data. Average F1 score for last 500 samples for this experiment
is 0.6875. Data is collected over 10 simulator runs.

Noisy artificial data

Noisy artificial data is closer to the real task and harder for the learning algorithm.
The results show that the period of stagnation begins later, since model needs more

46

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 1
0
0

 2
0
0

 3
0
0

 4
0
0

 5
0
0

 6
0
0

 7
0
0

 8
0
0

 9
0
0

1
0
0
0

1
1
0
0

1
2
0
0

1
3
0
0

1
4
0
0

1
5
0
0

1
6
0
0

1
7
0
0

1
8
0
0

1
9
0
0

2
0
0
0

2
1
0
0

2
2
0
0

2
3
0
0

2
4
0
0

2
5
0
0

2
6
0
0

2
7
0
0

2
8
0
0

2
9
0
0

3
0
0
0

3
1
0
0

3
2
0
0

F
1

 s
c
o

re

Figure 4.6: F1 score trace of the traditional simulator on noisy artificial data. Data is
collected over 10 simulator runs.

data to clear out the noise. After a certain level has beed achieved the model does
not improve any more and the maximal achievable F1-score is lower. The average
F1 score for last 500 samples is 0.6423. The difference is statistically significant.
Comparing the last 500 F1 score readings between the trivial and the noisy cases
yields p-value < 2.2×10−16. For the same reasons as in the trivial case, the model
does not reach the desired F1 score level of 0.9. Presence of noise does not make
the task easier.

4.4 Adaptive Agent Simulation

4.4.1 Simulating adaptive behavior

Behavior of an adaptive test subject is very different from the traditional one.
Since he receives feedback, he has the ability to alter the mapping between the
mental states and the actions. The positive feedback will encourage him to con-
tinue on using certain mental states for the certain actions, while negative feedback
will allow to understand which mental states are not suitable, or are in conflict with
some other mental states. The simulated test subject’s behavior is described by
the probability matrix, which holds the probabilities for invoking a certain mental
state in response to a certain action.

Definition 4.3. The probability matrix M is an integer matrix of size a×m where
a is the number of actions and m is the number of mental states in the imaginary
mental state space. Each column represents the probability distribution for certain
mental state to be invoked in response to the stimulus.

The probability matrix is initialized with uniform mental state distribution for
each of the actions. This corresponds to the test subject’s zero knowledge of his
mental state space in the beginning of the process. When the mental state m
is being evoked in response to the action a we adapt the simulated test subjects
behavior by incrementing or decrementing the probability score of the action a

47

for the mental state m. If the stimulus predicted by the model coincides with the
actual stimulus shown to the test subject we increment the probability score by
1. If the sample was misclassified we decrement the probability score by 1. Over
time our model will “learn” whether engaging mental state m in response to the
action a will give positive feedback or not.

1 2 3 4 5 6 7 8 9
0

5

10

15

20

Mental state

P
ro

b
a

b
ili

ty
 s

c
o

re

1 2 3 4 5 6 7 8 9
0

100

200

300

400

500

Mental state

P
ro

b
a
b
ili

ty
 s

c
o
re

Figure 4.7: Probability matrix of the adaptive behavior simulator in the beginning (left)
and in the end (right) of the learning process.

Figure 4.7 provides a visualization of one such matrix in the beginning and in
the end of the learning process. In the end of the process we can see how every
mental state is mapped to one particular action. Mental states 5 and 7 have
received very small amount of the positive feedbacks during the learning process,
which indicates that those mental states are not suitable, since they are either
not distinguishable enough, or they conflict with the other states. For example
we know from Table 4.1 that 5th mental state introduces the components into all
channels at once, therefore it is reasonable to expect that activating this mental
state will frequently cause conflicts and the test subject will be better off not
engaging this mental state at all. And as we see from the figure above the adaptive
test subject has successfully learned this fact and diminished the probability of
activating 5th mental state for any of the actions.

4.4.2 The implementation of the adaptive simulator

The adaptive simulator has several parameters, which can be changed to tune the
simulation process. Table 4.3 lists those parameters and explains their purpose.

The simulation process begins with generating initial data for each of the actions,
after that each new sample is being processed, issuing the feedback and evaluating
current state of the model. Listing 4.2 provides example output for the working
simulator after yet another sample has been processed.

Line 1 shows the index of the action the simulator is currently training, on line 2

we see the mental state the simulated test subject have chosen in response to the
current stimulus. Line 3 shows the BMU for the input vector x. Line 6 holds the
distribution (not normalized) of the actions in the current unit. Depending on the
success of the predictive model line 7 provides the feedback = {1,−1}.

48

Listing 4.2: Adaptive Behavior Simulator: example output

1 Action 2

2 State 4

3 Unit 26

4

5 Learning vector 0 1 0

6 Unit probability vector 35 6 2

7 Learning probability score -1

8

9 Confusion matrix for whole lifetime of the most recent model

10 49.0181 14.8157 19.1662

11 17.3839 39.6657 7.9505

12 24.2423 18.1684 37.5893

13

14 Last cycles confusion matrix

15 19.1909 5.5027 10.3064

16 4.5717 15.9333 4.4950

17 7.3857 3.3878 19.2265

18

19 If 0.50000 > 0.55212 => Recompute

20 If 0.90000 < 0.60350 => Learning complete

21

22 Recompute counter 228

23 Number of samples 642

In the current example we can see that the most probable action for unit 26 is
the first action. But since we are training action 2 at the moment, choosing unit
26 is considered to be a mistake and the system issues negative feedback. It will
decrease the probability of evoking mental state 4 in response to action 2.

Parameter Description
actions The list of actions we want to train.
action duration The range where the first number indicates minimal du-

ration of the stimulus (in seconds) and second indicates
the maximal duration. System will randomly choose du-
ration from this range for each stimulus. Default value is
[10 10], which means that all stimuli will be shown for
10 seconds.

f1 high Upper threshold after which learning process should be
considered successful and simulation will end.

f1 low Lower threshold for recomputing the model. Whenever
F1-score of the confusion matrix will drop below this value
system will assume the model to be inadequate and recom-
pute it. By default this value is given as a function of the
number of actions n: F1low = 1

n ∗ 1.5, which means that
model is considered adequate until its performance is 3

2
times better than random.

mental states The list of the mental states. Each element of the list is
a set of the channels where sinusoidal signal is introduced
when particular mental state is activated.

Table 4.3: The parameters of the adaptive simulator implementation.

Lines 10-12 hold the confusion matrix, which accounts for all the data samples
processed since the last update of the model. We can see on line 22 that the last

49

time this happened 228 samples ago. Confusion matrix on lines 15-17 accounts
only for the last 90 samples, thus it reflects the more current situation.

Lines 19 and 20 reflect the logic described in Section 3.2.3. If the F1 score of the
global matrix will fall below the threshold f1 low = 0.5, then the model will be
recomputed. If the F1 score of the recent matrix will exceed the threshold f1 high

= 0.9, then the learning process is complete.

4.4.3 Results

Trivial case

First we measure system performance in the ideal settings. The experiment de-
scribed in this section is performed on noiseless data. Each mental state introduces
sinusoidal component into designated channels, and, as before, some channels do
overlap. The adaptive learner is expected to get rid of the overlapping mental
states and map each mental state to only one action. Figure 4.8 demonstrates the
final state of the probability matrix after the desired level of model performance
is achieved. We can see how each state settled on one particular action.

1 2 3 4 5 6 7 8 9
0

100

200

300

Mental state

P
ro

b
a

b
ili

ty
 s

c
o

re

0 500 1000 1500 2000
0.2

0.4

0.6

0.8

1

Sample

F
1

 s
c
o

re

Figure 4.8: Final probability matrix (top) after F1
score ≥ 0.9 is achieved. The trace of the changes in
F1 score (bottom).

We measure system perfor-
mance as defined in Section
4.2: performance of the model
is reflected by the number
of samples the system needs
to process before the required
level of accuracy is achieved.
Box plot on Figure 4.13 de-
picts change of model perfor-
mance over time. The data is
taken over 10 simulator runs.
The simulator has achieved F1-
score ≥ 0.9 after 1900 samples
in most cases.

It is worth noticing that all
of the runs converged and the
growth rate was quite stable
over the runs.

50

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5
0

 1
0
0

 1
5
0

 2
0
0

 2
5
0

 3
0
0

 3
5
0

 4
0
0

 4
5
0

 5
0
0

 5
5
0

 6
0
0

 6
5
0

 7
0
0

 7
5
0

 8
0
0

 8
5
0

 9
0
0

 9
5
0

1
0
0
0

1
0
5
0

1
1
0
0

1
1
5
0

1
2
0
0

1
2
5
0

1
3
0
0

1
3
5
0

1
4
0
0

1
4
5
0

1
5
0
0

1
5
5
0

1
6
0
0

1
6
5
0

1
7
0
0

1
7
5
0

1
8
0
0

1
8
5
0

1
9
0
0

1
9
5
0

2
0
0
0

2
0
5
0

2
1
0
0

2
1
5
0

F
1

 s
c
o

re

Figure 4.9: Model performance and trace of the changes in F1 score for the adaptive
simulator (10 simulator runs).

Artificial noisy data

After the experiment on the trivial case has confirmed that the model works and
does converge as expected, we proceed to experiments on more realistic data. The
data for this experiment is generated as described in Section 4.1. Figure 4.10
demonstrates the performance.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 1
0
0

 2
0
0

 3
0
0

 4
0
0

 5
0
0

 6
0
0

 7
0
0

 8
0
0

 9
0
0

1
0
0
0

1
1
0
0

1
2
0
0

1
3
0
0

1
4
0
0

1
5
0
0

1
6
0
0

1
7
0
0

1
8
0
0

1
9
0
0

2
0
0
0

2
1
0
0

2
2
0
0

2
3
0
0

2
4
0
0

2
5
0
0

2
6
0
0

2
7
0
0

2
8
0
0

2
9
0
0

3
0
0
0

3
1
0
0

3
2
0
0

F
1

 s
c
o

re

Figure 4.10: F1 score trace of the adaptive simulator on the noisy artificial data (10
simulator runs).

In comparison with the traditional approach the adaptive simulator shows much
better performance. The presence of noise, as expected, made the situation worse
for both methods, but whilst the traditional method got stuck on F1 score of 0.64,
adaptive one was able to achieve the F1 score of 0.9, although it took more time.

4.5 Dependency Between the Number of Mental

States and System Performance

In the previous sections we made some quite abstract assumptions when we simu-
lated the test subject’s brain. Probably the least realistic one is that the simulated
test subject has 9 mental states. In this section we ran several experiments to see

51

how adaptive and traditional models would behave if we changed the following
parameters of the simulation:

a) The total number of mental states.
b) The total number of actions to train.
c) Both parameters simultaneously.

Experiments are conducted in the trivial (noiseless) setting.

Increasing the number of mental states

The increase in the number of mental states increased the time the adaptive sim-
ulator needed to converge. This is expected behavior, since the number of mental
states directly affects the dimensions of the probability matrix, thus requiring
more samples to diminish unsuitable states and select the suitable ones.

The level at which stagnation of the traditional simulator begins becomes higher
with the larger number of mental states. This is explained by the fact that the
chance to pick suitable mental states from a larger pool is higher.

0 500 1000 1500 2000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

3 actions, 3 states

0 500 1000 1500 2000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

3 actions, 6 states

0 1000 2000 3000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

3 actions, 9 states

0 1000 2000 3000 4000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

3 actions, 12 states

0 2000 4000 6000 8000 10000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

3 actions, 30 states

0 5000 10000 15000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

3 actions, 50 states

Figure 4.11: Trace of F1 score change for the traditional (blue) and the adaptive (green)
simulators under the condition of increasing the number of states.

Increasing the number of actions

With a larger number of actions the chance of a conflict between the mental states
increases. The adaptive simulator requires more time to converge, but converges

52

in all experiments we conducted.

The traditional simulator does not converge and with the increase in the number of
actions the maximal achievable F1 score decreases. This is the expected behavior,
since a larger number of conflicts will cause more difficult cases for the classifier.

0 1000 2000 3000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

3 actions, 9 states

0 1000 2000 3000 4000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 actions, 9 states

0 2000 4000 6000 8000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 actions, 9 states

0 2000 4000 6000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

6 actions, 9 states

0 2000 4000 6000 8000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

7 actions, 9 states

0 2000 4000 6000 8000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

8 actions, 9 states

Figure 4.12: Trace of F1 score change for the traditional (blue) and the adaptive (green)
simulators under the condition of increasing the number of actions.

Increasing the number of mental states and the number of actions

To check if some unexpected effect will occur when the number of mental states
and of actions is large, we performed one more series of experiments.

Results are consistent with everything seen so far: higher number of actions and
mental states causes the adaptive behavior to spend more time to converge, but
it does converge eventually. The traditional simulator does not converge and the
level of stagnation seems to be stable if the number of mental states and the
number of actions are linearly correlated.

53

0 2000 4000 6000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

3 actions, 15 states

0 2000 4000 6000 8000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 actions, 20 states

0 5000 10000 15000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 actions, 25 states

0 0.5 1 1.5 2

x 10
4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

6 actions, 30 states

0 1 2 3

x 10
4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

8 actions, 40 states

0 1 2 3 4

x 10
4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 actions, 50 states

Figure 4.13: Trace of F1 score change for the traditional (blue) and the adaptive (green)
simulators under the condition of increasing both the number of actions and the number
of the mental states.

4.6 Comparison

In this chapter we have performed a series of experiments to compare the tra-
ditional approach and adaptive interactive learning. Table 4.4 summarizes the
results we got.

Traditional approach Adaptive approach
Noiseless setting Does not converge.

Stagnation at F1 ≈ 0.6875
Converges.
F1 > 0.9 after ≈1900 samples.

Noisy setting Does not converge.
Stagnation at F1 ≈ 0.6423

Converges.
F1 > 0.9 after ≈3000 samples.

Increasing num-
ber of mental
states

Does not converge.
Maximal achievable F1 score in-
creases.

Converges.
Number of samples needed to
converge increases.

Increasing num-
ber of actions

Does not converge.
Maximal achievable F1 score de-
screases.

Converges.
Number of samples needed to
converge increases.

Increasing both
mental state and
action amounts

Does not converge.
Maximal achievable F1 score
seems to remain the same.

Converges.
Number of samples needed to
converge increases.

Table 4.4: Comparison of traditional and adaptive approaches on artificial data.

54

Chapter 5

Experiments on Real Data

The results, in which we are of the most interest to us, are the ones received from
the experiments on the real data. In this chapter we describe the experiments we
performed on the test subjects and the results we got.

5.1 Experimental Setup

The data is collected using the Emotiv EPOC device. Test subject is sitting in a
chair behind the display, on which the stimuli are presented. Each electrode’s
placement is adjusted to report a perfect contact (green color in the Emotiv
EPOC software) and respond with visible signal fluctuations to eye blinks and
teeth clenching. These actions trigger muscle activity, which presents very specific
markers on the raw EEG signal, for this reason they are traditionally used to make
sure that the EEG device captures the signal.

The goal is to create a model to discriminate between 3 mental states: thinking
“left”, neutral state and thinking “right”. Figure 5.1 presents the stimuli we use
during the experiments.

Figure 5.1: The stimuli presented to the test subject: “left”, “neutral” and “right”.

Each test subject was asked to complete three series of trials:

1. Training data for the traditional method: 7 minutes of stimuli presented in

55

random order, each stimulus shown for 10 seconds.

2. Test data for the traditional method: 3 minutes of stimuli presented in
random order, each shown for 10 seconds.

3. Adaptive learning process: the duration is not fixed, the order of the stimuli
is based on the probabilistic confusion matrix described in Section 3.2.3.
System finds the minimal value on the main diagonal of the matrix and
displays the stimulus, which corresponds to the row of the matrix where the
minimal value was found. Each stimulus is shown for 10 seconds.

5.2 Traditional Method

We use Support Vector Machines (SVM) as the classification algorithm. The
choice was made based on the empirical data: we tried three different algorithms
to find out which one will work best. In addition to the SVM we tried Näıve Bayes
and C4.5 classification algorithms.

Figure 5.2: The GUI of the tra-
ditional experimenter has only one
component: the stimulus display.

For the SVM we have performed a search in the
parameter space to estimate the best achievable
result for the data. Here is the list of the pa-
rameters we were searched through:

• window size (seconds): {0.3, 0.5, 1, 2}

• kernel type: {linear, polynomial, RBF}

• polynomial degree for the polynomial ker-
nel: {2, 3, 4, 5}

• regularization cost: {0.001, 0.01, 0.1, 1,
10, 100}

Figure 5.2 depicts the traditional simulator ap-
plication.

5.3 Novel Method

Figure 3.6 depicts the main window of the adaptive experimenter application.
The experiment does not have a fixed time limit. It continues as long as the test
subject is willing to continue or until the upper threshold for F1 score is reached.
This would indicate that a sufficiently good model was found.

56

5.4 Results

In this section we present the final results we have achieved on the real data. We
have conducted two types of experiments. During the first one the test subject
was allowed to engage facial muscle activity in response to the stimuli. This type
of response has clear effect on the EEG reading. The second experiment is aimed
purely at the recognition of mental states. Test subject was asked to attempt not
to move facial or any other muscles in association with the certain stimulus.

5.4.1 Facial expressions

Face muscle activity highly affects the EEG readings and can be observed with
a naked eye on the raw signal. In this series of experiments we mapped facial
expressions to the actions. The test subject’s task was to train a 3-class classifier
using facial expressions.

Figure 5.3 presents the results. The circular marker denote the result achieved
using traditional approach and the triangular ones denote the adaptive approach.
Each test subject is marked with different color. On the X-axis we can see the
number of samples the algorithm needed to reach the F1 score displayed on the
Y-axis.

Figure 5.3: 3 class training results using facial expressions via traditional (circe) and
interactive (triangle) approach.

We have conducted the experiment on too few test subjects to claim the statis-

57

tically significant increase, but it seems that the adaptive model allows the test
subject to find suitable actions and therefore leads to a higher performance score.

5.4.2 Mental states

Compared to the facial expressions experiment the task of distinguishing mental
states if much harder. It also requires more time before the test subject begins to
understand how his efforts affect the machine. In Section 4.5 we have seen that
with increasing number of mental states the simulated test subject needs several
thousands of samples to converge. The problem we encountered is that the task
of sustaining a certain mental state is hard and the test subjects tire soon. To
avoid this problem in the future we might be able to rearrange the learning process
somehow.

Figure 5.4 shows the results we achieved on a small group of test subjects. Con-
ducting a more broad series of experiments is part of the planned future work.

Figure 5.4: 3 class training results using power of thought via traditional (circle) and
interactive (triangle) approach.

58

Chapter 6

Discussion

In this thesis we proposed a new conceptual and algorithmic approach to the
process of training Brain-Computer Interface systems. It relies on the idea of
interaction between the test subject and the machine and the ability of those two
agents to adapt accordingly to the information received via feedback.

We believe that the novel approach we propose has several advantages over the
traditional one:

• The test subject receives the feedback on how suitable his mental states and
how good he is in sustaining them.

• Test subject can adapt his behavior during the learning process based on
the feedback he receives.

• During the learning process the test subject can not significantly hinder the
creation of a model by producing mislabeled samples.

• There is no need to pre-estimate the time needed for the learning process.
Learning will finish as soon as the desired level of performance is achieved.

• The learning algorithm has only one parameter: the size of the SOM.

The experiments on the simulated data has shown the weaknesses of the traditional
approach and the advantages of using the adaptive approach instead.

The results on real data show a small increase in the created model’s performance,
which is yet to be verified by a more broad series of experiments. However the
results we achieved already are at least as good and even slightly better than
the results of the traditional approach, which, together with the other advantages
listed above speak in favor of the adaptive interactive training.

59

Future work

In the process of studying the topic we have encountered on numerous occasions
that some subtopics and details require additional research and more experimental
work. In this section we list the ideas which we plan to investigate and which could
improve the learning algorithm and the training process further.

a) The current way of deciding when it is time to update the model is quite
näıve. It relies only on the performance score of the model. A more reason-
able alternative would consist of several models being created simultaneously.
The system would track the performance of each of the models, which are
created on different subsets of the data with different parameters, and if any
of the alternative models becomes better than the current one then the sys-
tem would replace the current model with the best one. Such an approach
would also allow us to get rid of a parameter our algorithm has. The size
of the SOM can be estimated during the learning process and changed if
needed.

b) A smarter way to update the model is possible. The current solution recom-
putes the model from scratch using more data. This results in re-initializing
the probability vectors and therefore loosing some information. A smarter
way to change the model would rely on updating rather than recomputing.
In terms of SOM this would mean realigning the weight vectors incremen-
tally.

c) Perhaps some unsupervised online learning algorithms other than SOM should
be attempted.

d) SOM itself can be used as a visualization of the feedback. Currently the
feedback consists of the score and the collided stimulus. Another approach
would be to allow the test subject to see the whole SOM and after each new
processed sample highlight the unit of the map where this sample was put
into and the probability score. In this way the test subject will gain the
information about how hit mental efforts are aligned on the map.

e) Attempt different strategies for updating the probability vectors.

f) Rebuild the system from the Matlab code to a self-contained modular ap-
plication, which can be extended by different learning algorithms, model
update approaches and other pieces of internal logic.

g) Test the system on a more sophisticated EEG device.

h) Conduct a more extensive series of experiments to achieve statistically sig-
nificant results.

60

Summary

A Brain-Computer Interface is a system which allows communication between a
human and a computer. Using various neuroimaging techniques the brain activity
is recorded and transmitted to the computer, where the signal is analyzed with the
help of machine learning methods. The ultimate goal of BCI is to empower the
human with the ability to control the external device with the power of thought.

However, distinguishing mental states of a human is a challenging task and stan-
dard machine learning alone is not enough to solve the problem. Acceptable level
of performance can be achieved after a long training process, during which the
human learns how to produce suitable mental states and the machine creates a
model, which is able to classify the signal.

In this thesis we proposed a conceptually new approach to the process of training a
BCI system. It relies on the idea of the interaction between the test subject and the
machine and the ability of those two agents to adapt their behavior accordingly
to the information they receive during the learning process. The approach is
proposed as a counterpart to the traditional BCI training, where the test subject
does not receive any feedback.

Another novelty in comparison to the traditional approach is using an unsuper-
vised learning algorithm (SOM) as the core of the learning system. The original
concept of self-organizing maps is amended to represent a probabilistic predictive
model, which can be used to classify the brain signal, provide feedback and adapt
the model in real time.

The devised learning scheme is implemented as a Matlab application, which com-
municates with an EEG device in real time. Series of experiments were conducted
both on artificial and real data. The results of the experiments on artificial data
show the number of advantages of the interactive approach over the traditional
one. Experiments on real data confirm the superiority of the interactive approach
as well.

On artificial data the simulator of the adaptive learning method always converges
to the upper F1 score threshold of 0.9. The simulator based on the traditional
method rarely achieved the 0.9 threshold, in most cases it gets stuck at a certain
level of F1 score. The F1 score level at which stagnation begins depends on the

61

complexity of the simulation and varies from 0.5 to 0.8. The adaptive simulator
responds to more complex problems by increasing the time it requires in order to
reach the 0.9 threshold.

We have conducted two types of experiments on real data:

1. Classification of facial expressions. During this series of experiments the test
subject was allowed to respond to stimuli with movement of facial muscles,
which are well detected by the EEG device.

2. Classification of mental states. The test subject is not allowed to engage
any muscle activity in association with certain mental states and has to
communicate with the system using mental activity only.

Classification of facial expressions using the traditional approach yielded F1 score
= 0.69 on average. Using the interactive approach the test subject was able to
bring the F1 score up to 0.9. Experiments on mental state classification were not
as successful. The best result is the increase of F1 score from 0.4 (traditional
approach) to 0.47 (interactive approach) for one of the test subjects.

We conclude that adaptive learning process has the multiple major advantages
over the traditional one and deserves a future study.

62

Interaktiivne
kohandamisvõimeline õppimine:
uus lähenemine aju-arvuti liidese
süsteemi õpetamiseks

Magistritöö (30 EAP)

Ilja Kuzovkin

Kokkuvõte

Aju-arvuti liides (AAL) on süsteem, mis võimaldab infovahetust inimese aju ja
arvuti vahel. Kasutades erinevaid neuropildistuste tehnikaid aju aktiivsust salves-
tatakse ja saadetakse arvutisse, kus signaal töödeldakse masinõpe meetoditega.
AALi põhieesmärk on anda inimesele võimalust juhtida välisseadet kasutades
mõttejõudu.

Inimese mõtteseisundite eristame on raske ülesanne, mis ei ole lahendatav ainult
masinõpe kasutamisega. Vastuvõetav klassifitseerimise täpsuse tase on saavutatav
pärast pikajalist õpetamise protsessi, mille jooksul inimene õpib kuidas ta peab
tekitama sobivad mõtteseisundid, ning arvuti loob mudeli, mis oskab neid eristada.

Käesolevas töös me esitame uut lähenemist AAL süsteemi õpetamise protsessi
jaoks. See põhineb inimese ja arvuti koostoimimise ideel, mille jooksul mõlemad
osapooled adapteerivad oma käitumist vastavalt sellele, millist tagasisided nad
saavad suhtlemise ajal. Pakutud viisi vastandiks on võetud traditsiooniline lähenemine,
kus katseisik ei saa tagasisidet õppeprotsessi edukusest selle käigus.

Teine uudsus traditsioonilise meetodiga võrreldes on juhendamata õppealgoritmi
kasutamine (iseorganiseeriv kaart, SOM) meie süsteemi tuumana. Algne iseor-
ganiseeruva kaardi algoritm on täiendatud niimoodi, et ta esindab tõenäosusliku
ennustamise mudelit, mis oskab klassifitseerida aju signaali, anda tagasisidet kat-

63

seisikule ning vajadusel kohandada mudelit reaalajas.

Väljpakutud õppimise skeem on realiseeritud Matlab rakendusena, mis suhtleb
EEG seadmega reaalajas. Kasutades seda rakendust said läbiviidud eksperimen-
did kunst-, ning reaalaandmete põhjal. Eksperimentide tulemused näitavad, et
interaktiivsel meetodil on eelised traditsioonilise meetodiga võrreldes. Eksperi-
mendid reaalandmetel ka kinnitavad interaktiivse meetodi paremust.

Kunstlike andmete põhjal interaktiivse meetodi simulaatori tulemus alati jõuab
eelmääratud F1 skoori 0.9 piirile. Simulaator, mis baseerub traditsioonilise mee-
todi põhjal, jõuab aga 0.9 piirini väga harva. Tavaliselt mudel jääb kinni ebaop-
timaalse täpsuse tasemel. Sõltuvalt ülesande keerukusest algab kinnijäämine F1
skoori tasemetel 0.5 kuni 0.8. Adaptiivse käitumise simulaator oli võimeline ka
raskemate ülesannete puhul saavutada skoori 0.9, kugi vajas selleks rohkem aega
kui lihtsamate ülesannete puhul.

Me viisime läbi kaks tüüpi eksperimentidest:

1. Näoilmete klassifitseerimine. Eksperimendi jooksul pidi katseisik vastama
stiimulitele kasutadades näo lihaseid. Need liigutused on kergesti tuvas-
tatavad EEG seadme poolt.

2. Mõtteseisundi klassifitseerimine. Katseisik pidi vastama stiimulitele ainult
kasutades mõtteseisundeid, talle ei olnud lubatud seostada lihaste liigutused
ekraanil olevate stiimulitega.

Näoilmete klassifitseerimine kasutades traditsioonilist lähenemist andis keskmiselt
F1 skoori 0.69. Kasutades aga interaktiivset meetodit suutsid katseisikud tõsta
süsteemi täpsust 0.9-ni. Eksperimendid mõtteseisundite klassifitseerimisest ei ol-
nud nii edukad, kuid ka siin F1 skoori parenemine oli saavutatud: parima tule-
muse saavutas katseisik, kes suutis interaktiivse meetodi abil tõsta F1 skoori 0.4-st
(saavutatud traditsioonilise meetodiga) 0.47-ni.

Me järeldame, et interaktiivne lähenemine süsteemi õpetamiseks omab järgmisi
eelisi traditsioonilise meetodiga võrreldes:

• Katseisik saab tagasisidet õppeprotsessi ajal, mis võimaldab tal kohandada
oma käitumist parema tulemuse saavutamiseks.

• Katseisik ei saa tekitada “valet” signaali näidist, mis oluliselt takistaks adek-
vaatse mudeli loomist.

• Meie algoritm omab ainult üht parameetri, samas kui traditsiooniline mee-
tod, sõltudes algoritmi valikust, võib nõuda ulatusliku otsingu algoritmi
parameetrite ruumis, selleks ei jõuda adekvaatse mudelini.

64

Appendix A: Software download
links and instructions

Components of the system

The most current implementation of the system can be downloaded from the URL
http://www.ikuz.eu/adaptive/code-masters.zip. The data we have collected
can be downloaded from URL http://www.ikuz.eu/adaptive/data-masters.

zip.

Adaptive experimenter

In order to run this application open Adaptive Experimenter directory in your
Matlab environment and run experimenter feedback gui.m.

Traditional experimenter

To run this application open Traditional Experimenter directory in your Mat-
lab environment and run experimenter.m.

Generator

In order to run this application open Generator directory in your Matlab envi-
ronment and run generator.m. If you want to run Generator and Experimenter
simultaneously run them as separate Matlab instances.

Adaptive simulator

In order to run this application open Adaptive Simulator directory in your Mat-
lab environment and run adaptive offline.m.

65

http://www.ikuz.eu/adaptive/code-masters.zip
http://www.ikuz.eu/adaptive/data-masters.zip
http://www.ikuz.eu/adaptive/data-masters.zip

Traditional simulator

In order to run this application open Traditional Simulator directory in your
Matlab environment and run traditional offline.m.

Toolboxes

FieldTrip

The toolbox can be downloaded from http://fieldtrip.fcdonders.nl/download.
After the download add it to the Matlab path and run command ft defaults to
initialize the toolbox components. To read the data stream from the Emotiv EPOC
device run the emotiv2ft.exe application located in the FieldTrip\realtime\
bin\win32 directory.

SVM toolbox

The toolbox is required to run Traditional Experimenter and Traditional

Simulator applications and can be downloaded from http://www.cis.hut.fi/

projects/somtoolbox/download. Add the unpacked toolbox directory to the
Matlab path.

EEG-like data generator

The Matlab code to generate EEG-like data can be downloaded from http://

www.cs.bris.ac.uk/home/rafal/phasereset. It is, however, also included in
the distribution of our system.

66

http://fieldtrip.fcdonders.nl/download
http://www.cis.hut.fi/projects/somtoolbox/download
http://www.cis.hut.fi/projects/somtoolbox/download
http://www.cs.bris.ac.uk/home/rafal/phasereset
http://www.cs.bris.ac.uk/home/rafal/phasereset

Bibliography

[aud] Physiological and histological investigation of structure and function
of the normal auditory system
http://www.ihr.mrc.ac.uk/index.php/research/current/1.

[BKM+91] JW Belliveau, DN Kennedy, RC McKinstry, BR Buchbinder,
RM Weisskoff, MS Cohen, JM Vevea, TJ Brady, and BR Rosen.
Functional mapping of the human visual cortex by magnetic reso-
nance imaging. Science, 254(5032):716–719, 1991.

[CL11] Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for sup-
port vector machines. ACM Transactions on Intelligent Systems and
Technology (TIST), 2(3):27, 2011.

[CS03] Eleanor A Curran and Maria J Stokes. Learning to control brain ac-
tivity: A review of the production and control of eeg components for
driving brain–computer interface (bci) systems. Brain and cognition,
51(3):326–336, 2003.

[CV95] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Ma-
chine learning, 20(3):273–297, 1995.

[dB05] Roberto Coelho de Berrêdo. A review of spiking neuron models and
applications. PhD thesis, Universidade Federal de Minas Gerais,
2005.

[EE04] Abbas Erfanian and Ali Erfani. Ica-based classification scheme for
eeg-based brain-computer interface: the role of mental practice and
concentration skills. In Engineering in Medicine and Biology Society,
2004. IEMBS’04. 26th Annual International Conference of the IEEE,
volume 1, pages 235–238. IEEE, 2004.

[emo] Emotiv epoc specifications
http://emotiv.com/upload/manual/EPOCSpecifications.pdf.

[Emo12] EPOC Emotiv. Software development kit, 2012.

[FGG97] Nir Friedman, Dan Geiger, and Moises Goldszmidt. Bayesian network
classifiers. Machine learning, 29(2-3):131–163, 1997.

67

http://www.ihr.mrc.ac.uk/index.php/research/current/1
http://emotiv.com/upload/manual/EPOCSpecifications.pdf

[Fis91] Bruce J. Fisch. Spehlmann’s EEG Primer. ELSEVIER, 1991.

[GEV03] Gary N Garcia, Touradj Ebrahimi, and J-M Vesin. Support vector eeg
classification in the fourier and time-frequency correlation domains.
In Neural Engineering, 2003. Conference Proceedings. First Interna-
tional IEEE EMBS Conference on, pages 591–594. IEEE, 2003.

[GFF+93] PM Grasby, CD Frith, KJ Friston, CRSF Bench, RSJ Frackowiak,
and RJ Dolan. Functional mapping of brain areas implicated in au-
ditory—verbal memory function. Brain, 116(1):1–20, 1993.

[GPD85] George L Gerstein, Donald H Perkel, and Judith E Dayhoff. Co-
operative firing activity in simultaneously recorded populations of
neurons: detection and measurement. The Journal of neuroscience,
5(4):881–889, 1985.

[HFL10] Christoph S Herrmann, Ingo Fründ, and Daniel Lenz. Human
gamma-band activity: a review on cognitive and behavioral corre-
lates and network models. Neuroscience & Biobehavioral Reviews,
34(7):981–992, 2010.

[HIT+03] Takashi Hanakawa, Ilka Immisch, Keiichiro Toma, Michael A
Dimyan, Peter Van Gelderen, and Mark Hallett. Functional prop-
erties of brain areas associated with motor execution and imagery.
Journal of Neurophysiology, 89(2):989–1002, 2003.

[HKI09] H.J. Hwang, K. Kwon, and C.H. Im. Neurofeedback-based motor
imagery training for brain? computer interface (bci). Journal of
neuroscience methods, 179(1):150–156, 2009.

[HP00] Ernst Haselsteiner and Gert Pfurtscheller. Using time-dependent
neural networks for eeg classification. Rehabilitation Engineering,
IEEE Transactions on, 8(4):457–463, 2000.

[Izh03] Eugene M Izhikevich. Simple model of spiking neurons. Neural Net-
works, IEEE Transactions on, 14(6):1569–1572, 2003.

[KABG+06] Elif Kirmizi-Alsan, Zubeyir Bayraktaroglu, Hakan Gurvit,
Yasemin H Keskin, Murat Emre, Tamer Demiralp, et al. Compar-
ative analysis of event-related potentials during go/nogo and cpt:
decomposition of electrophysiological markers of response inhibition
and sustained attention. Brain research, 1104(1):114–128, 2006.

[KC06] Michael A Kisley and Zoe M Cornwell. Gamma and beta neural ac-
tivity evoked during a sensory gating paradigm: effects of auditory,
somatosensory and cross-modal stimulation. Clinical neurophysiol-
ogy, 117(11):2549–2563, 2006.

68

[Koh82] Teuvo Kohonen. Self-organized formation of topologically correct
feature maps. Biological cybernetics, 43(1):59–69, 1982.

[KSO07] Noriaki Kanayama, Atsushi Sato, and Hideki Ohira. Crossmodal ef-
fect with rubber hand illusion and gamma-band activity. Psychophys-
iology, 44(3):392–402, 2007.

[LC02] Hyekyoung Lee and Seungjin Choi. Pca-based linear dynamical sys-
tems for multichannel eeg classification. In Neural Information Pro-
cessing, 2002. ICONIP’02. Proceedings of the 9th International Con-
ference on, volume 2, pages 745–749. IEEE, 2002.

[LCL+07] Fabien Lotte, Marco Congedo, Anatole Lécuyer, Fabrice Lamarche,
Bruno Arnaldi, et al. A review of classification algorithms for eeg-
based brain–computer interfaces. Journal of neural engineering, 4,
2007.

[LdS91] Fernando Lopes da Silva. Neural mechanisms underlying brain waves:
from neural membranes to networks. Electroencephalography and
clinical neurophysiology, 79(2):81–93, 1991.

[Luc05] Steven J Luck. An introduction to the event-related potential tech-
nique (cognitive neuroscience). 2005.

[M+67] James MacQueen et al. Some methods for classification and analysis
of multivariate observations. In Proceedings of the fifth Berkeley sym-
posium on mathematical statistics and probability, volume 1, page 14.
California, USA, 1967.

[MGPF99] Johannes Müller-Gerking, Gert Pfurtscheller, and Henrik Flyvbjerg.
Designing optimal spatial filters for single-trial eeg classification in a
movement task. Clinical neurophysiology, 110(5):787–798, 1999.

[ner] Nerve cell http://en.wikipedia.org/wiki/Nerve_cell.

[NYC04] Sander Nieuwenhuis, Nick Yeung, and Jonathan D Cohen. Stimulus
modality, perceptual overlap, and the go/no-go n2. Psychophysiology,
41(1):157–160, 2004.

[OFMS11] Robert Oostenveld, Pascal Fries, Eric Maris, and Jan-Mathijs Schof-
felen. Fieldtrip: open source software for advanced analysis of meg,
eeg, and invasive electrophysiological data. Computational intelli-
gence and neuroscience, 2011:1, 2011.

[Pea01] Karl Pearson. Liii. on lines and planes of closest fit to systems of
points in space. The London, Edinburgh, and Dublin Philosophical
Magazine and Journal of Science, 2(11):559–572, 1901.

69

http://en.wikipedia.org/wiki/Nerve_cell

[PKN+96] G Pfurtscheller, J Kalcher, Ch Neuper, D Flotzinger, and M Pregen-
zer. On-line eeg classification during externally-paced hand move-
ments using a neural network-based classifier. Electroencephalography
and clinical Neurophysiology, 99(5):416–425, 1996.

[PNG+00] Gert Pfurtscheller, C Neuper, C Guger, WAHW Harkam, Herbert
Ramoser, Alois Schlogl, BAOB Obermaier, and MAPM Pregenzer.
Current trends in graz brain-computer interface (bci) research. Re-
habilitation Engineering, IEEE Transactions on, 8(2):216–219, 2000.

[PP07] Satu Palva and J Matias Palva. New vistas for α-frequency band
oscillations. Trends in neurosciences, 30(4):150–158, 2007.

[Qui93] John Ross Quinlan. C4. 5: programs for machine learning, volume 1.
Morgan kaufmann, 1993.

[SE05] Abdulhamit Subasi and Ergun Erçelebi. Classification of eeg signals
using neural network and logistic regression. Computer Methods and
Programs in Biomedicine, 78(2):87–99, 2005.

[som] Kohonen’s self-organizing map
http://newplans.net/Robotics/ArtificialNetwork/kohonen’

s.htm.

[ŠSS03] Jakub Št’astnỳ, Pavel Sovka, and Andrej Stančák. Eeg signal classifi-
cation: introduction to the problem. Radioengineering, 12(3):51–55,
2003.

[TAM07] Ryota Tomioka, Kazuyuki Aihara, and Klaus-Robert Müller. Logis-
tic regression for single trial eeg classification. Advances in neural
information processing systems, 19:1377–1384, 2007.

[TBS+93] Vernon L Towle, José Bolaños, Diane Suarez, Kim Tan, Robert
Grzeszczuk, David N Levin, Raif Cakmur, Samuel A Frank, and
Jean-Paul Spire. The spatial location of eeg electrodes: locating the
best-fitting sphere relative to cortical anatomy. Electroencephalogra-
phy and clinical neurophysiology, 86(1):1–6, 1993.

[TGP04] George Townsend, Bernhard Graimann, and Gert Pfurtscheller. Con-
tinuous eeg classification during motor imagery-simulation of an
asynchronous bci. Neural Systems and Rehabilitation Engineering,
IEEE Transactions on, 12(2):258–265, 2004.

[tre] Decision trees
https://www.projectrhea.org/oldkiwi/index.php/Lecture_

21_-_Decision_Trees(Continued).

[VHAP00] Juha Vesanto, Johan Himberg, Esa Alhoniemi, and Juha Parhankan-
gas. SOM toolbox for Matlab 5. Citeseer, 2000.

70

http://newplans.net/Robotics/Artificial Network/kohonen's.htm
http://newplans.net/Robotics/Artificial Network/kohonen's.htm
https://www.projectrhea.org/oldkiwi/index.php/Lecture_21_-_Decision_Trees(Continued)
https://www.projectrhea.org/oldkiwi/index.php/Lecture_21_-_Decision_Trees(Continued)

[VRPG90] AC Metting Van Rijn, A Peper, and CA Grimbergen. High-quality
recording of bioelectric events. Medical and Biological Engineering
and Computing, 28(5):389–397, 1990.

[WF05] Ian H Witten and Eibe Frank. Data Mining: Practical machine
learning tools and techniques. Morgan Kaufmann, 2005.

[Won10] Cheuk-Wah Wong. The brain, thinking, and memory: A theory
based on pathophysiology of amnesia. Neurology, 100, March 2010.

[YBHC04] Nick Yeung, Rafal Bogacz, Clay B Holroyd, and Jonathan D Cohen.
Detection of synchronized oscillations in the electroencephalogram:
an evaluation of methods. Psychophysiology, 41(6):822–832, 2004.

Internet URLs were valid on May 20, 2013.

71

License

Non-exclusive license to reproduce thesis and make

thesis public

I, Ilya Kuzovkin (09.07.1988),

1. herewith grant the University of Tartu a free permit (non-exclusive licence)
to:

1.1. reproduce, for the purpose of preservation and making available to the
public, including for addition to the DSpace digital archives until expiry
of the term of validity of the copyright, and

1.2. make available to the public via the web environment of the University
of Tartu, including via the DSpace digital archives until expiry of the
term of validity of the copyright,

“A New Approach to Training Brain-Computer Interface Systems”, super-
vised by Konstantin Tretyakov,

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intel-
lectual property rights or rights arising from the Personal Data Protection
Act.

Tartu, 20.05.2013

	Introduction
	Biological and Technological Background
	Electroencephalography
	Biology of the human brain
	EEG technology
	EEG signal

	Fourier Transform
	Machine Learning
	Supervised and unsupervised learning
	Support vector machines
	Naïve Bayes classifier
	Decision tree classifier
	Self-organizing maps
	K-means
	Performance evaluation
	Principal component analysis

	Emotiv EPOC and EEG Signal
	Emotiv EPOC
	Signal Consistency
	Signal Distribution Over Different Mental States
	Empirical Estimations of Complexity of Real Data
	Comparing SOM and K-means on real data
	Analyzing principal components

	Adaptive Interactive Learning: A Novel Approach to BCI Training
	Traditional BCI Training
	The Novel Approach
	Interactive adaptive learning
	Predictive SOM
	Implementation of the interactive trainingprocess
	A scheme to summarize

	Experiments on Artificial Data
	Brain Signal Simulation
	Generating EEG-like data
	Introducing components into noisy data
	Generator

	Comparing Adaptive and Traditional Learning Methods in the Artificial Setting
	Traditional Simulator
	Simulating traditional behavior
	Traditional simulator implementation
	Results

	Adaptive Agent Simulation
	Simulating adaptive behavior
	The implementation of the adaptive simulator
	Results

	Dependency Between the Number of Mental States and System Performance
	Comparison

	Experiments on Real Data
	Experimental Setup
	Traditional Method
	Novel Method
	Results
	Facial expressions
	Mental states

	Discussion
	Summary
	Resümee
	Appending A: Software download links and instructions
	Bibliography
	License

