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Abstract:
Emotional state recognition is a crucial task for achieving a new level of Human-

Computer Interaction (HCI). Machine Learning applications penetrate more and more
spheres of everyday life. Recent studies are showing promising results in analyzing phys-
iological signals (EEG, ECG, GSR) using Machine Learning for accessing emotional
state. Commonly, specific emotion is invoked by playing affective videos or sounds.
However, there is no canonical way for emotional state interpretation. In this study, we
classified affective physiological signals with labels obtained from two emotional state
estimation approaches using machine learning algorithms and heuristic formulas. Com-
parison of the method has shown that the highest accuracy was achieved using Random
Forest classifier on spectral features from the EEG records, a combination of features for
the peripheral physiological signal also shown relatively high classification performance.
However, heuristic formulas and novel approach for ECG signal classification using
recurrent neural network ultimately failed. Data was taken from the MAHNOB-HCI
dataset which is a multimodal database collected on 27 subjects by showing 20 emotional
movie fragment‘s. We obtained an unexpected result, that description of emotional states
using discrete Eckman’s paradigm provides better classification results comparing to the
contemporary dimensional model which represents emotions by matching them onto the
Cartesian plane with valence and arousal axis. Our study shows the importance of label
selection in emotion recognition task. Moreover, obtained dataset have to be suitable for
Machine Learning algorithms. Acquired results may help to select proper physiological
signals and emotional labels for further dataset creation and post-processing.
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Emotsionaalse Seisundi Tuvastamine Füsioloogiliste Signaalide Baasil

Võtmesõnad:
Emotsioonide Tunnustamine, Emotsioonide Klassifikatsioon, Füsioloogilised Signaalid,
EEG, EKG, Masin Õppimine

CERCS: P170

Lühikokkuvõte:
Emotsionaalsete seisundite tuvastamine on väga tähtis inimese ja arvuti vahelise

suhtlemise (Human-Computer Interaction, HCI) jaoks. Tänapäeval leiavad masinõppe
meetodid ühe enam rakendust paljudes inimtegevuse valdkondades. Viimased uuringud
näitavad, et füsioloogiliste signaalide analüüs masinõppe meetoditega võiks võimaldada
inimese emotsionaalse seisundi tuvastamist hea täpsusega. Vaadates emotsionaalse sisu-
ga videosid, või kuulates helisid, tekib inimesel spetsifiline füsiloogiline vastus. Antud
uuringus me kasutame masinõpet ja heuristilist lähenemist, et tuvastada emotsionaalseid
seisundeid füsioloogiliste signaalide põhjal. Meetodite võrdlus näitas, et kõrgeim täpsus
oli saavutatud juhumetsa (Random Forest) meetodiga rakendades seda EEG signaalile,
mis oli teisendatud sagedusintervallideks. Ka kombineerides EEG-d teiste füsioloogiliste
signaalidega oli tuvastamise täpsus suhteliselt kõrge. Samas heuristilised meetodid ja
EEG signaali klassifitseerimise rekurrentse närvivõrkude abil ebaõnnestusid. Andmeal-
likaks oli MAHNOB-HCI mitmemodaalne andmestik, mis koosneb 27 isikult kogutud
füsioloogilistest signaalidest, kus igaüks neist vaatas 20 emotsionaalset videolõiku. Oo-
tamatu tulemusena saime teada, et klassikaline Eckman’i emotsionaalsete seisundite
nimekiri oli parem emotsioonide kirjeldamiseks ja klassifitseerimiseks kui kaasaegne
mudel, mis esitab emotsioone valentsuse ja ärrituse teljestikul. Meie töö näitab, et emot-
siooni märgistamise meetod on väga tähtis hea klassifitseerimismudeli loomiseks, ning et
kasutatav andmestik peab sobima masinõppe meetodite jaoks. Saadud tulemused võivad
aidata valida õigeid füsioloogilisi signaale ja emotsioonide märkimise meetodeid uue
andmestiku loomisel ja töötlemisel.
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1 Introduction
Emotional state recognition is an estimation of humans organism state after a particular
stimulus. According to physiological studies, different emotional states cause some
changes in the sympathetic branch of the autonomous nervous system, which regulates
the functioning of heart, respiration and body heat [New80]. Thus, all mentioned features
can be measured using available medical techniques like electrocardiography, electromyo-
graphy, electrodermal activity, and electroencephalography, because the emotional state
also reflects on the brain activity.

Recognition of human emotions may provide more comfortable experience in the
human-computer interaction (HCI). A multimedia industry may benefit from emo-
tional recognition applications by adjusting their content according to consumers mood
[SLPP12]. Affordable devices that can accurately measure heart rate, electrocardiogram
or electroencephalogram are widely represented on the current market, so such HCI
application becoming more and more realistic.

The goal of this thesis is to compare two emotional paradigms in terms of emotional
state recognition based on physiological signals. In particular, in this work, we took
labels from self-assessed emotional keywords and self-assessed valence / arousal and
transformed both of them to low, medium and high categories in valence / arousal scales.
Next, we classified affective emotional state records from the MAHNOB-HCI dataset
using heuristic and machine learning methods.

In the background chapter, I described existing concepts of emotion categorization
and physiological signals that recapitulate changes in emotional states. Also, emotional
elicitation techniques and affective physiological databases were presented. In the
methods chapter machine learning and data processing, approaches were explained.
Result chapter combines presentation and interpretation of the reach performances in
different experimental setups. In the conclusion chapter, we end up with surprising
results, that more straightforward way for emotional state estimation using discrete
emotional keywords in most cases provided better classification performance.
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2 Background
In the first part of this section, we will give a general description of emotion phenomena
and introduce discrete and dimensional (valence / arousal) emotional paradigms. Next,
physiological signals that indicate emotional state changes will be presented. The
third part of the chapter will provide information about existing techniques for emotion
elicitation. Finally available physiological databases that were collected using mentioned
approaches will be described in details.

2.1 Theories of Emotions
Throughout the ages, philosophers were thinking about the origins of emotions. Be-
ginning with Aristotle, who established the four humors - components of the human
body that are responsible for an emotional state. Further, Galen called them “sanguine”,
“choleric”, “melancholic” and “phlegmatic” [Mer87]. With the arrival of the twentieth
century, physiology as a part of medicine experienced rapid development. Based on
research, the majority of scientists agree that three basic emotions (fear, anger, and hap-
piness) are the most distinguishable and significantly differ from each other [WMBB13].
However, emotional expressions are much more compound, so more complex multidi-
mensional models were developed to provide a comprehensive representation of human
emotions [Rus80]. In this section, we describe two most popular models of human
emotional state.

2.1.1 Discrete Emotion Model

The most well-known emotional paradigm belongs to one of the mos authoritative
physiologists of 20th century Paul Ekman. During his research in Papua New Guinea,
he remarked that some facial expressions of isolated tribe members also manifested in
another culture [Ekm93], which means that some emotional expressions are common
for all human beings. Based on his observations he proposed six basic emotions: anger,
disgust, fear, happiness, sadness, and surprise [EF71]. Despite the fact, that more efficient
paradigms was developed, described one still considered suitable for emotional state
representation.
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Figure 1. Six basic emotions by Ekman [EF71] (Image took from [Man]).

Further research by Izard [Iza77] [ATAS88] modified Ekman’s model. Carrol Izard
took into account physiological features and proposed next ten classes: anger, disgust,
fear, sadness, contempt, shame, guilt, joy, surprise and interest.

The primary advantage of emotion categorization in a discrete manner is plainness
for the majority of people that allows for their extensive use in surveys and questioning.
Unfortunately, they are not suitable for human-computer interaction. Humans tend to
name the same emotional state using different words. For example, words that describe
emotions may vary depending on context, cultural background, and personality. That is
why we need something more efficient to represent a human emotional state.

2.1.2 Valence / Arousal Emotion Model

Russel [Rus80] proposed the two-dimensional emotional model in 1980. The main
idea is to divide emotions into two components: valence (or pleasure) and arousal (or
activation). Negative values on a valence axis correspond to negative emotional state, and
positive values correspond to a positive state, respectively. Arousal axis defines “power”
of emotion or how it’s active or passive depending it’s positive or negative. Origin of
mention two axes represents a neutral state.

Whissel proposed to divide the considered model into quadrants like in Cartesian
plane and assign to them emotions from the discrete paradigm [Whi09] (see Figure 2).
First quadrant (positive valence, positive arousal) specifies active and positive emotional
states like excitement, surprise, happiness, etc. The second quadrant (negative valence,
positive arousal) corresponds to high-activated negative emotion like anger, fear, distress.
The third quadrant (negative valence, negative arousal) indicates negative calm states
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such as disgust or sadness. The last, fourth quadrant (negative valence, positive arousal)
describes positive states with low power; the best example will be relaxation, satisfaction,
and calmness.

Figure 2. Whissel Wheel model [RMMI+14].

However, this model has a disadvantage, emotions that lie in the same quadrant
might be indistinguishable in some cases. To tackle this problem, a technique called
self-assessment manikin (SAM) was developed. It allows to accurately collect human
response in an intuitive way that is readily interpretable on valence / arousal model.
Initially, Semantic Differential Scale (SDS) proposed by Mehrabian [MR74] was used
for measuring valence and arousal. SDSs data collection process was inconvenient
and was not suitable for non-English speakers, because implied answering questions
in English for evaluation of the experienced emotion [MR74]. SAM was developed by
Lang in 1980 [Lan80]; it contains a set of pictures shown in Figure 3.

Figure 3. Self-assessment manikin [BF17].

On the SAM picture, high valence is encoded as a smiling face figure, and a gloomy
character depicts low valence. For the arousal scale, a character with widely opened eyes
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stands for positive value and figure with entirely closed eyes for negative. Thanks to its
simplicity SAM can be applied to a range of emotion elicitation methods and allows to
collect responses not only from non-English speakers but also from children and adults
[LHCJL85], as well as various clinical populations [BL94].

2.2 Physiological Signals Associated with Emotion
When talking about traditional human-computer interaction, the emotional state of the
user is usually not taken into account. However, usage of it might significantly increase
the efficiency of intercommunication in such applications as e-learning, games and health
care. The most native way of emotion manifestation by a human are facial expressions,
voice tone, gestures, and posture, but all of the mentioned attributes can be controlled
and faked. Thus, researchers of the affecting computing are focused on the physiological
signals, because they are regulated by a sympathetic branch of the autonomous nervous
system and cannot be elicited by any conscious or purposive control [New80]. The most
used physiological signals for emotional state estimation are:

• Electrical activity of the brain (electroencephalography, magnetoencephalography
[ASK+15])

• Cardiac function (electrocardiography and heart rate variability)

• Skin conductance (galvanic skin response)

• Muscle electrical activity (electromyography)

• Respiration

• Temperature

2.2.1 Electroencephalography

Electroencephalography (EEG) is a method for recording electrical brain activity. Electri-
cal phenomena of the exposed cerebral hemispheres of mammals were found in 1975 by
Richard Caton [Sch74]. In 1924 Hans Berger recorded the first human EEG. According
to D. Millet, EEG was called “one of the most surprising, remarkable, and momentous
developments in the history of clinical neurology” [Mil02]. Contemporary EEG is non-
invasive in most cases — the electrodes are placed on the scalp surface. A common way
to place them is called “10-20” system [Sil63]. This is an internationally recognized set
of rules of placement and interpretation for EEG recordings. Each electrode placement
area named by letter which encodes the lobe, or area of the brain (pre-frontal (Pf), frontal
(F), temporal (T), parietal (P), occipital (O), and central (C)) and a number (to distinguish
multiple electrodes on the same region (see Figure 4). “10-20” requires at least 19

10



electrodes, however, depending on task this number might be higher. It was called in
such way because the distances between the contiguous electrodes can be 10% or 20%
of the total left-right or front–back length of the brainpan.

Figure 4. EEG electrodes placement according 10-20 system [AG15].

EEG is a way of monitoring the brain activity monitoring by measuring voltage
changes appeared after activation of the nerve cells (neurons) [Tep02]. From the clinical
perspective, EEG measures unprompted electrical activity during the time. The primary
sources for clinical diagnosis are brain responses to a motor, sensory and cognitive events
that are called Event-Related Potentials, and power spectrum analysis which transforms
the signal from time to frequency domain. There are five standard frequency bands: delta
(less than 4 Hz), theta (from 4 to 7 Hz), alpha (from 8 to 15 Hz), beta (from 16 to 31 Hz)
and gamma (more than 32 Hz). Expression of each band is used for dysfunction detection.
For example, epilepsy, coma, encephalopathies, brain death and sleep disorders could
be recognized. Also, EEG is used for the initial diagnosis of brain tumors, strokes, and
other brain disorders. Despite the popularity of EEG, such brain imaging techniques as
magnetic resonance imaging (MRI) and computed tomography (CT) are more suitable for
diagnostics task. EEG has poor spatial resolution compared to fMRI and CT. However, it
outperforms them in temporal resolution. Thus, it is appropriate to use in the emotional
state recognition tasks.

2.2.2 Electrocardiogram

Electrocardiography(ECG) is the approach of recording the electrical activity of the heart
using electrodes attached to the skin. These electrodes detect the minimal electrical
changes on the skin surface that appear from the heart muscle’s contraction and relaxation
during each heartbeat [NLdS05]. Conventional 12-lead ECG includes ten electrodes that
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are placed on the patient’s arms, legs and along the chest. They allow monitoring heart
activity from different angles in vertical and horizontal electrical planes. Throughout
each heartbeat, a healthy heart has an orderly progression of special events that represent
mechanics of cardiac muscle activity. In contemporary cardiology, these events are called
P, Q, R, S, T points and are shown in Figure 5.

Figure 5. Visualization of PQRST events [img18].

For the experienced doctors, an ECG contains a significant amount of information
about the state of the heart and cardiovascular system. Also, an ECG can be used
to measure the heart rate variability, the size and position of the heart chambers, the
presence of any damage to the heart’s muscle cells or conduction system, the effects
of cardiac drugs, and the function of implanted pacemakers. Data scientists attempted
ECG problems for last two decades [Kon01], however, always faced with a lack of
data. Luckily, portable ECG recorders widely arise on the market in recent years, which
significantly increased the amount of data. Results were not long in coming, Stanford
research group released a paper [RHH+17] where they claimed human (doctor) accuracy
in various types of arrhythmia detection and reached such performance using data from
30,000 unique patients.
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2.2.3 Heart Rate Variability

Heart rate variability (HRV) is a phenomenon of volatility in the time interval between
the heartbeats. This physiological mark is measured by the length of consecutive inter-
beat intervals (RR-intervals). Primary methods for tracking heartbeats are ECG, blood
pressure, ballistocardiograms (monitoring of barely noticeable body fluctuations caused
by heart activity), and the pulse wave signal extracted from a photoplethysmograph (PPG)
[LZJ+08] (a technique based on an optical sensor for pulse measure, widely spread in
modern wearable devices). However, ECG is considered being the most reliable, because
it contains direct information about cardiac muscle contraction in its waveform. For HRV
analysis performs in time and frequency domains. For time domain those features are
the number of pairs of successive RR-intervals that differ by more than 50 ms, mean,
standard deviation and range of RR-intervals. For frequency domain, the high-frequency
band (HF) from 0.15 to 0.4 Hz, the low-frequency band (LF) from 0.04 to 0.15 Hz, and
the very low-frequency band (VLF) from 0.0033 to 0.04 Hz are extracted using discrete
Fourier transform [BAGC86] and allow to detect anomalies in the heart functions.

2.2.4 Galvanic Skin Response

Galvanic Skin Response (GSR) is a feature of human body continuously change its
electrical characteristics. In different sources it is also called skin conductance, elec-
trodermal response (EDR), psychogalvanic reflex (PGR), skin conductance response
(SCR), sympathetic skin response (SSR) and skin conductance level (SCL) [wik18a].
Theoretically, GSR is based on hypothesis, that skin resistance depends on the state
of sweat glands (tubular structures of the skin that produce sweat [wik18b]). Since
sweating is out of control of the human, it is regulated by the autonomous nervous
system (ANS). High arousal of the sympathetic branch of ANS increases the sweat gland
activity, which accordingly increases skin conductance and another way around. This
is the reason why GSR can be considered as an index of emotional and sympathetic
responses. Complementary studies are saying about dependencies between electrodermal
response and such emotional states like stress, drowsiness, and engagement [NWC13].
GSR signal is elementary to collect. Initially, two electrodes should be placed on the
second and third finger as shown in Figure 6.

Then, low-voltage current is supplied to the placed electrodes, and the changes in
conductivity are measured in units of micro-Siemens (µS). Traditionally, GSR data is
obtained with the sampling rates from 1 to 10 Hz, but some new equipment can provide
resolution up to 1 kHz.

2.2.5 Muscle Electrical Activity

The procedure for measurement of electrical muscle activity is called electromyography
(EMG). Electric potential generated by the motor neurons is recorded by electrodes
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Figure 6. Galvanic Skin Response recording procedure [Imo].

when the internal electrical source or brain command activates the cells. For the clinical
purposes, the obtained signal is interpreted as a sound, graph or numerical values for
further analysis by a specialist. The given technique can be used for the diagnostics of
nerve and muscle dysfunction and problems with the nerve-to-muscle signal transmission.

2.2.6 Respiration

Respiration (breathing, ventilation) is physiological of phenomena of air transfer in
and outside the lungs. During this process, blood saturates with oxygen from the
gas obtained in the breath stage, in the exhalation stage, the body gets rid of carbon
dioxide. Breathing, like other physiological factors, reflects on the organisms state
changes, emotions are not an exception. Increased heart rate and more rapid braising
in humans with high arousal state were shown [NTD97] [Boi98]. Also, animal and
human studies show, that high-frequency respiration patterns were observed during fear
and the anxiety state [Dav92]. Anxiety as a primary emotion is considered to be the
most distinguishable based on the breathing pattern. In this case, increase in respiration
frequency is not related to oxygen consumption, but is caused by parasympathetic
nervous system [MH01] which is responsible for the emotional regulation. Respiration
rate widely used in polysomnography (sleep studies) and polygraph tests, along with
the other physiological signals mentioned in this chapter. There are several methods for
measuring the breathing rate. Impedance pneumography involves measures of velocity
and force of chest movements during respiration; capnography technique controls the
concentration or pressure of carbon dioxide in the respiratory gases. They both are used
in clinical practice. However, alternative wearable devices with the electrocardiogram,
photoplethysmogram, and accelerometry sensors allow making the same monitoring with
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relatively high accuracy.

2.2.7 Temperature

Temperature is quite advantageous and straightforward physiological signal. Value of
the temperature may vary, depending on the place of the body, physical activity of the
person and measuring equipment. Since changes in temperature correlate with emotional
state adjustments, it is widely used in polygraphs and another type of emotional state
monitoring.

2.3 Emotion Elicitation Techniques
Emotion elicitation is a crucial part of affective science. During the with years of studies
in this field, researchers have concurred that no single sensory domain would be ultimate
for emotional invocation. Thus, a wide range of different techniques was developed.
Mostly, they include visual, auditory and even social or environmental effects. Some
approaches combine various modalities, like audio + visual by showing affective videos.
However, the hottest topic of recent years is Virtual Reality (VR) [OAHT17] application
for the considered task. The virtual environment gives more mobility to the subject
allows adjusting the stimulus to provide higher emotional arousal. In the next sections,
all mentioned techniques will be described in more details, with examples of affective
databases and their experimental setups.

2.3.1 Visual Stimuli

International Affective Picture System (IAPS) [LBC99] is the best-known database
for affective state studies; it provides pictures to conduct experiments for different
physiological research like emotions and attention. It was developed by the National
Institute of Mental Health Center for Emotion and Attention at the University of Florida.
This database was developed over several years, and in 2005 it contained 956 color
photos varying from everyday items and situations like cats or furniture to very specific,
with maimed humans or sexual scenes.

IAPS has one advantageous feature that distinguishes it from other datasets. All
photos in it were evaluated in valence and arousal scales. During the collection of
the database, subjects’ assessments were collected in valence, arousal and dominance
dimensions using the earlier described technique called SAM. An experimental setup was
as follows: all images were divided into 16 batches 60 images in each, with 6 seconds
for showing a picture and 15 seconds for rating them by the subject. Overall, 50 men and
50 women took part in this experiment. Also, the same tests were conducted on children
but with extend time and more child-friendly explanations.
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However, usage of IAPS in studies is too broad, making stimulus known to subjects
prohibiting its use in subsequent trials. Thus, datasets analog to IAPS were collected. For
instance, Geneva Affective Picture Database (GAPED) contained 730 validated pictures
and aimed to increase the availability of visual and emotional stimuli [DGS11]. For
elicitation of negative emotions, they used photos of spiders, snakes and violent scenes.
The Nencki Affective Picture System (NAPS) incorporates even more images (1,356)
with high resolution, which are categorized into five groups (landscapes, objects, faces,
animals, and humans) [MŻJG14]. There is also an open-access dataset OASIS (Open
Affective Standardized Image Set) [KLB17], it simulates IAPS [LBC99], but is available
in public domain with no restrictions. All the databases mentioned above were validated
in valence / arousal dimensions using the SAM technique.

2.3.2 Audio Stimuli

Audio stimuli are used much less often. Understandably, mining of audio data requires
more effort comparing to images. However, dataset called International Affective Dig-
itized Sounds (IADS) was created [SJ08], in comparison with previously collected
databases that had an insufficient number of dimensions (separating only positive emo-
tions from negative one), it was validated as well as IAPS in valence / arousal domain.
Given database consist of 111 emotionally evocative sounds for the full range of emotions.
Recent studies [NVG+15] shown comparative results of elicitation for further emotional
state detection based on physiological signals. The used HRV as a data for emotion
recognition and obtained 84.72% on the valence dimension, and 84.26% on the arousal
dimension. Other studies that solve the same problem but on the data collected via IAPS
[LBC99] or similar dataset provided almost the same results, so audio emotion elicitation
is suitable for physiological, affective data collection.

2.3.3 Videos Stimuli

Video stimuli are the most widely used way for emotion elicitation in laboratory studies
[BDCC15]. Combination of audio and visual channels provide a more realistic emotional
experience which is closer to real life. First trials in the creation of short video for emotion
elicitation were made by Philippot [Phi93], also, Gross and Levenson [GL95]. However,
selected clip segments were able to invoke only strong emotions. Therefore, during the
next studies, researchers attempted to expand the range of emotions that possible to elicit
by multimedia stimuli. In Table 1 we presented currently available databases.
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Table 1. Annotated Video Databases for Emotion Elicitation [BDCC15].

Name Size and Duration Emotional labels
HUMAINE
[DCCM+11]

50 clips from 5 seconds
to 3 minutes long

Wide range of labels at a global
level (emotion-related states, con-
text labels, key events, emotion
words, etc.) and frame-by-frame
level (intensity, arousal, valence,
dominance, predictability, etc.)

FilmStim
[SNSP10]

70 film excerpts from 1
to 7 minutes long

24 classification criteria: subjec-
tive arousal, positive and nega-
tive affect, a positive and nega-
tive affect scores derived from the
Differential Emotions Scale, six
emotion discreteness scores and
15 mixed feelings scores

DEAP
[KMS+12]

120 one-minute music
videos

Ratings from an online self-
assessment on arousal, valence
and dominance and physiological
recordings with face video for a
subset of 40 music videos

MAHNOB-HCI
[SLPP12]

20 film excerpts from 35
to 117 seconds long

Emotional keyword, arousal, va-
lence, dominance and predictabil-
ity combined with facial videos,
EEG, audio, gaze and peripheral
physiological recordings

EMDB
[CLGÁG12]

52 non-auditory film
clips of 40 seconds long

Global ratings for the induced
arousal, valence, dominance di-
mensions

VIOLENT
SCENES

DATASET
[DPGS12]

25 full-length movies Annotations include the list of the
movie segments containing phys-
ical violence according to two
different definitions and also in-
clude 10 high-level concepts for
the visual and audio modalities
(presence of blood, fights, gun-
shots, screams, etc.)

LIRIS-
ACCEDE
[BDCC15]

9,800 excerpts from 8 to
12 seconds long

Rankings for arousal and valence
dimensions
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A dataset HUMAINE collected by Douglas-Cowie [DCCM+11] contains several
subsets of natural and affected responses. Because of the broad range of labels, it’s not
applicable for machine learning task, though well represents basic principles of affective
computing.

The FilmStim database [SNSP10] collected by Shaefer contains 70 video clips val-
idated by physiologists for experimental use. There are ten videos for every emotion
(neutral, tenderness, amusement, sadness, fear, disgust, anger). 24 items of assessment
were collected from 364 subjects, which makes this dataset validated on the highest
number of participants. However, desired the emotional state that expressed by physio-
logical activity leads only up to 10 seconds [Kap11], so in given dataset, a real response
is vanished in time because of video length from 1 to 7 minutes.

Koelstra built a dataset called DEAP [KMS+12], it consist of 120 music video
fragments, each minute long and was validated in valence / arousal scale on 14 subjects.
Furthermore, physiological signals like EEG, GSR, blood volume pressure, temperature,
and respiration. Unfortunately, some of the used videos are under the copyright, another
one, collected from YouTube are no longer available. It suggests that such databases
have to be based on the open-source content.

Another affective database presented in the Table 1 called MAHNOB-HCI created
by Soleymani [SLPP12]. This dataset is multimodal, besides 20 clips extracted from
movies, it also contains records of various physiological signals and eye gaze data for 27
participants. As all previous databases, it validated in valence / arousal dimensions.

Emotional movie database (EMDB) [CLGÁG12] is another set of videos for emotions
elicitation. The critical feature of this database that all 54 clips provided without sound.
It was done to enhance the capacity of future experiments.

Demarty released one specific affective database in 2012 [DPGS12]. It called violent
scene Dataset, consequently, containing movies with cruel fragments. Because of
lopsided thematics of content in given database, only highly aroused negative emotions
can be studied.

Massachusetts Institute of Technology (MIT) also have their affective database
[JBC14]. Using GIF files (short looped videos without sound) from social networks
they obtained 2.5M user annotations for 17 discrete emotions. Such broad control group
makes this dataset very promising for further research.

In conclusion, the database called LIRIS-ACCEDE, which overcomes the limitations
of all predecessors, was released in 2015 by Baveye [BDCC15]. 9,800 videos were col-
lected under creative commons licenses, that means no issues with copyrights for public
sharing. All videos in a considered database are from 8 to 12 seconds long, which makes
it convenient for physiological signal measurements during emotion elicitation. Also, all
records are accompanied by valence / arousal values collected via self-assessment.
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2.3.4 Other Types of Stimuli

According to definition of emotion given by Klaus R. Scherer [Sch05]:“An episode of
interrelated, synchronized changes in the states of all or most of the five organismic
the evaluation of an external or internal stimulus event as relevant to major concerns
of the organism”, stimulus for emotion elicitation may be literally any event from the
environment. Thus, Healy and Picard from MIT used the real-world driving task to draw
drivers into the stressful state [HP05]. Each of 24 subjects drove at least 50 minutes,
while physiological signals like ECG, GSR, and respiration were recorded. Further
studies based on collected data [HP05] showed a correlation between drivers stress level
and changes in skin conductivity and heart rate. This research demonstrates how different
stimuli can be used for emotion elicitation.

Another alternative way for emotional invocation is using dyadic interaction described
by Roberts, Tsai and Coan [RTC07]. The main idea of given technique is to engage
interlocutors into such conversation, which maximizes the elicitation of emotion. For
instance, contrary emotions were detected during discussions in a controversial field,
whereas, positive emotions were obtained in conversations about enjoyable topics. A
mentioned approach is not suitable for physiological data collection, because it’s hard to
estimate exact time of real emotional invocation.

Virtual and augmented reality (VR & AR) is new but very promising tools for
affective computing. Recent study [OAHT17] shows that mentioned technologies can
efficiently elicit emotionally and add flexibility to the experimental setup. Adjustability
of the virtual environment allows generation of individual stimulus that would provide
higher aroused emotional expression.

2.4 Datasets of Human Affective States
Currently, there is no benchmark for emotional state recognition algorithms. How-
ever, several databases presented in Table 2 are using in research. All considered
datasets are multimodal, that means multiple streams of data (mostly physiological) were
record during each session. DEAP is a well-known dataset [KMS+12] of EEG signals
form emotional state recognition; it also has records of peripheral physiological signals
like GSR and respiration. However, it’s more frequently appears in papers dedicated
to research emotional brain activity. Another dataset called DECAF [ASK+15] is a
Magnetoencephalography-based Multimodal Database for Decoding Affective Physio-
logical Responses. It had the wider range of signals like ECG, EMG and infra-red video
as additional modality and was collected using the same short videos as in the DEAP.
ASCERTAIN [SWA+17] and AMIGOS [CASP17] are relatively new and unexplored
datasets with both visual and physiological (EEG, ECG, GSR) data streams. Regrettably,
brain activity data of each of them were collected using devices from the public market
with dry electrodes, which might provide a signal of lower quality. But still, they are
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very interesting for further research regarding peripheral philological signal analysis.
Current poor number of affected state datasets with physiological signals explained

by difficulties and costliness of data collection and processing. However, with the arrival
of cheap and accurate wearable sensors, the number of such databases might severely
increase.

Table 2. Datasets of physiological signals for emotional state recognition [CASP17].

Dataset No.
Part.

No. of
Stimuli

Purpose Modalities Annotations

DEAP
[KMS+12]

32 40 Implicit affec-
tive tagging
from EEG
and peripheral
physiological
signals

EEG, GSR, Respira-
tion Amplitude, Skin
Temperature, Blood
Volume, EMG and
Electrooculogram.
Visual for 22

Self-assessment of
arousal, valence,
liking, dominance
and familiarity.
participants

DECAF
[ASK+15]

30 40 Affect recog-
nition

MEG, Near-infra-red
facial video, horizon-
tal Electrooculogram,
ECG and trapezius-
Electromyogram

Self-assessment of va-
lence, arousal and
dominance. Continu-
ous annotation of va-
lence and arousal of
the stimuli.

ASCERTAIN
[SWA+17]

58 36 Personality
and Affect

EEG, ECG, GSR and
Visual

Big-Five personality
traits, self-assessment
of valence and
arousal.

AMIGOS
[CASP17]

40 36 & 16 Affect, per-
sonality,
mood and
social context
recognition

Audio, Visual, Depth,
EEG, GSR and ECG

Big-Five personality
traits and PANAS.
Self-assessment of va-
lence, arousal, dom-
inance, liking, famil-
iarity and basic emo-
tions. External anno-
tation of valence and
arousal.

MAHNOB-
HCI
[SLPP12]

27 20 Emotion
recognition
and implicit
tagging

Visual, Audio,
Eye Gaze, ECG,
GSR, Respiration
Amplitude, Skin
temperature, EEG

Self-assessment of
valence, dominance,
predictability and
emotional keywords.
Agreement/disagree-
ment with tags.
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3 Methods
In this chapter, we describe the data and the methods used for the classification emotional
state. First, a detailed specification of the multimodal database MAHNOB-HCI will be
provided. Then, we introduce approaches for physiological signal preprocessing which
involve filtration, annotation, feature extraction, and normalization. In the next section,
heuristical methods for valence / arousal estimation will be described. In the last part,
we will introduce several machine learning algorithms for data classification.

3.1 The Data
As mentioned in sections 2.4 and 2.3.3, MAHNOB-HCI [SLPP12] is a multimodal
dataset which was collected for two purposes. First, to build a collection of emotional
responses to videos, second, for implicit image tagging. In this work, we are considering
only the first part that is intended for emotional recognition. 20 clips that were used
for emotion elicitation were selected from 155 movie scenes. They were shown to
more than 50 participants and rated in valence / arousal / dominance scales. Videos
with the highest number of tags (i.e., video with the highest number of fear tags were
selected to invoke fear state) [SLPP12] appeared in the final compilation. Some of them
are from such popular movies like “Hannibal”, “The Pianist”, “Kill Bill”, “Gangs of
New York”, etc. The duration of them was between 34.9 and 117 s long (M = 81.4 s;
SD = 22.5 s). However, corresponding physiological records are padded by 30-second
signals collected on the neutral video stimuli before and after the main video record.
Originally, given dataset should include 540 sessions (27 participants and 20 effective
videos). However, some sessions were corrupted, so 527 relevant records were obtained.
Under the multimodal, we mean seven different sources of data that synchronously
represent a state of the subject. Those modalities include: video of participants face
recorded from several perspectives, eye gaze data, EEG, ECG, GSR, respiration, and
temperature. All physiological signals (except EEG) were recorded with sampling
rate 1025 Hz, afterwards, during post-processing, they were resampled to 256 Hz for
computational efficiency. ECG signal contains data from 3 leads. However, only one,
with the purest signal, was used – it was enough to annotate PQRST-complex and extract
HRV features. EEG data were collected from 32 AgCl electrodes placed according to the
international 10-20 system, which provided a comprehensive representation of the brain
activity. Besides physiological response, self-assessed labels were collected. After each
experimental session, a participant was interviewed using SAM technique described in
section 2.1.2 in valence, arousal, dominance, predictability and nine discrete emotional
labels (neutral, anxiety, amusement, sadness, joy (happiness), disgust, anger, surprise,
and fear) [SLPP12].

Due to a high quality of gathered data, MAHNOB-HCI is widely used in emotional
state recognition research. Soleymani et al. [SLPP12] provided a baseline for emotional
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state recognition obtained on given dataset. By merging valence and arousal labels
in three classes (low, medium and high). He achieved 46.2% / 45.5% on peripheral
physiological data, 52.4% / 57.0% on EEG signal, 63.5% / 68.8% on Eye gaze and
67.7% / 76.1% on a fusion of previous two modalities. Further studies [WL17] in
emotional state recognition based on peripheral physiological signals showed accuracies
around 50% for separate patterns, for fusion they reached almost 55% and 56.83% in
valence / arousal classes accordingly. Also, Ferdinando et al. [FSA17] in his studies
hasn’t achieved a significant improvement for valence classification, but for arousal,
accuracy increased from 58.7% to 69.6%. Such increase resulted from the application of
supervised dimensionality reduction techniques. Xu and Plataniotis [XP15] improved
accuracies for EEG signal classification: they achieved 64.74% and 62.75% on three-
class valence / arousal task by applying ANOVA [Dem60] feature selection mechanism.
Studies, as mentioned earlier, are showing, that emotions are distinguishable via machine
learning algorithms trained on physiological data, but unfortunately, accuracies are still
not satisfying for industrial use.

3.2 Label extraction
MAHNOB-HCI provides several self-assessment indicators. In this work we were
focused on the next three: self-assessed discrete emotion from the group of nine emotions
mentioned in the previous section, self-assessed valence and arousal values (discrete
values from 1 to 9) obtained using SAM described in the section 2.1.2. In both cases,
classification into nine groups is an overwhelming task, taking into account the number of
training samples and general complexity of emotional representation in the physiological
signal. Thus, it was decided to reduce the number of classes for both valence and arousal
into tree groups (“low”, “medium” and “high”). In case of self-assessed valence and
arousal, a technique is quite straightforward and is described in Table 3.

Table 3. Label mapping for self-assessed valence and aroual.

Affective state Self-assessed Valence and Arousal
Low 1, 2, 3

Medium 4, 5, 6
High 7, 8, 9

For self-assessed emotional keywords, the procedure is a bit more complicated. As
far as this approach refers to a discrete emotional paradigm, it has a mapping to the
dimensional model provided by [FSRE07] (see Table 4).
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Table 4. Label mapping for self-assessed emotional keywords.

Affective State Mapping
To valence To arousal

Low fear, anger, disgust, sadness, anxiety sadness, disgust, neutral
Medium surprise, neutral joy (happiness), amusement

High joy (happiness), amusement surprise, fear, anger, anxiety

Thus, two datasets with same class names were obtained for further comparison in
machine learning classification.

3.3 Valence and Arousal Estimation from EEG Signal
Lots of studies claim that asymmetry of frontal hemispheres brain activity represents
valence and arousal of emotions [Dav93]. This section will introduce several methods
for valence / arousal classification based on EEG signal recorded during music listening.
To estimate this activity, power spectrum bands (alpha and beta) from five EEG channels
are calculated. These five channels are Fz, AF3, F3, AF4, F4 according to 10-20 system
[Sil63] described in the Section 2.2.1.

3.3.1 Method Proposed by Kirke

This method was introduced by Kirke [KM11] in 2011. He proposed formula 1 and
formula 2 for valence and arousal estimation. left_alpha and left_beta were calculated
as a mean of spectral power recorded from channels AF3, F3 in 7-15 Hz and 16-31 Hz
bands, while right_alpha and left_beta were calculated in the same way, but on the
data from channels AF4, F4 channels.

valence = log (left_alpha)− log (right_alpha) (1)

arousal = −(log (right_alpha) + log (left_alpha)) (2)

Given method was tested on the data collected while participants listened to a se-
quence of ambient and hard rock music divided by silent fragments. To simulate different
scales of valence / arousal, pitch and tempo of fragments were adjusted. There were
three participants, and each was affected to achieve five valence states and five arousal
states. Final classification accuracies if five classes were 80% and 70% for valence and
arousal correspondingly.
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3.3.2 Method Proposed by Vamvakousis

Another method for valence estimation using AF3, AF4, F3 and F4 channels was pro-
posed by Vamvakousis [RV12] in 2012. A new formula shown in equation 3, calculates
the difference of beta to alpha ratios from the left and right hemispheres.

valence = left_beta/left_alpha− right_beta/right_alpha (3)

For estimation of arousal a brand new formula was introduced. It takes log2 from the
ratio of front_alpha to front_beta, the formula shown in equation 4.

arousal = log2(front_beta/front_alpha) (4)

Given algorithm was tested on six subjects (3 females and 3 males), during the exper-
iment where 12 sound stimuli (5-second records from the IADS database described in the
section 2.3.2) were presented with 10 seconds rest before each stimulus. Tackling most
common value obtained from 1-second fragments of corresponding EEG record, only
50% instances were correctly classified. Because of the unsatisfactory result, machine
learning algorithm was applied on top of obtained values to improve performance.

3.3.3 First Method Proposed by Ramirez

A first method proposed by Ramirez in 2012 [VR12] had equation 5 and 6 for estimating
valence and arousal respectively.

valence = alpha_F4/beta_F4− alpha_F3/beta_F3 (5)

arousal = alpha_all/beta_all (6)

As described in the equations above, valence formula calculates the difference of
alpha to beta ratios from the F4 and F3 channels. For arousal calculation, the ratio be-
tween spectral power means (alpha_all and beta_all) taken from all channels (AF3, F3,
AF4, F4). Unfortunately, an author not provided any information related to performance
evaluation.

3.3.4 Second Method Proposed by Ramirez

A second method proposed by Ramirez in 2015 [RPLGV15] undergone some minor
changes comparing to previous one. A formula for valence calculation, that is presented
in equation 7, was slightly simplified. Now it is just a difference between alpha extracted
from the F4 channel and beta from the F3 channel. For the arousal formula, that
is described in equation 8, the only change is that numerator and denominator were
swapped, so it is beta_all divided by alpha_all.
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arousal = alpha_F4− beta_F3 (7)

arousal = beta_all/alpha_all (8)

This approach was tested on ten subjects. Ten sessions per subject were recorded,
each 15 minutes long. During the session, selected music fragments were played with one
second of silence in between. According to the experimental protocol, increased loudness
and tempo make arousal and valence to increase correspondingly. The evaluation was
performed regarding changes of the average valence / arousal values during the first and
the last sessions. However, an accuracy of given method was not provided.

3.4 Preprocessing and Feature Extraction
Preprocessing plays a crucial role in the physiological data analysis pipeline. Measured
signals may have different types of artifacts caused by sudden muscle movements,
equipment, external inference and some other factors. These conditions impede further
data processing. Fortunately, there are lots of techniques to eliminate most of the
mentioned issues. The methods we used will be described further in this section. Feature
extraction is also essential step before data classification. Correctly calculated and
selected features will significantly affect the final score. In this section, we will describe
the feature extraction approaches for EEG, ECG and other peripheral physiological
signals we used in this work. The last topic of this section is data normalization. Besides
the information about the emotional state, physiological signals contain lots of different
insights considering subjects health condition. We have to take this information into
account in order to eliminate physical properties and work only with emotional changes.

3.4.1 EEG Signal

During the EEG collection phase, internal factors could affect a signal, creating unde-
sirable artifacts, that might impact classification results. In this section, the pipeline for
electroencephalographic data processing will be described. In short, we can divide it into
four stages:

1. Extraction of EEG signal from MAHNOB-HCI database

2. Remove baseline noise

3. Remove powerline noise

4. Calculate features using Fast Fourier Transform (FFT)
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Data extraction was made using bob Python library. It has a function that provides
the whole EEG record from MAHNOB-HCI databese by specifying a file and required
channel name. For the second stage, a method called detrend from Python library
scipy.signal was used. Baseline noise or trend is an artifact with much less frequency
comparing to the normal range of signals fluctuation. In the EEG, such noise appears
because of poor contact of electrodes, variations in temperature or bias in the equipment.
To eliminate this problem, least-square fit [RN13] subtracts it from the initial data.
Thirdly, powerline noise should be removed. It appears because of the electricity network,
in frequencies 50 Hz and 60 HZ for Europe and the US correspondingly. These artifacts
have a significant impact on the frequency domain, so aggravate further spectrum analysis
of EEG. To avoid this issue, a technique called Notch-filter was used. It removes certain
frequency component, by solving some difference equation, that has desired frequency
as a parameter, and shows a relation between output and input signals. Results of the
Notch-filter work are shown in Figure 7.

Figure 7. Results of the Notch-filter application.

(a) before filtration (b) after filtration

The final step is to extract frequency domain representation of the input signal.
We want to know, which amount of each frequency from some range is present in
given sequence. To do that, an algorithm called fast Fourier transform (FFT) was used.
According to this approach, decomposition of discrete Fourier transform (DFT) matrix
is taken to computational efficiency [VL92], it reduces the complexity of computing
from O(n2) to O(n log n) where n is the length of the inoput signal. For its part, DFT
calculates by a formula shown in equation 9, where x is an initial signal and X in an
output of DFT).

Xk =
N−1∑
n=0

xne

2πi

N
kn

=
N−1∑
n=0

xn · [cos (2πkn/N)− i · sin (2πkn/N)] (9)
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FFT is a function that produces complex values, the absolute value of them shows the
amount of that frequency present in the signal, imaginary part of those values represents
the phase shift of the primary sinusoid in that frequency. To calculate Power Spectrum
Density (PSD) from the obtained data, formula described in the equation 10 should
be applied. In given equation, Xn is a spectrogram obtained after the FFT, and ν is a
sampling rate of the initial signal.

PSD =
|Xn|2

2πν
(10)

PSD represents a distribution of power spread between frequency components that
constitute a signal [SM+05]. To prepare EEG data for further machine learning classi-
fication, PSD is calculated on the short fragments sampled from all EEG channels by
sliding window (commonly 1 second long with 25% overlapping). Afterward, PSDs
obtained from the same channel shall be averaged. Thus, the 2d matrix where channels
correspond to rows and frequencies correspond to columns will be flattened into a feature
vector which would represent given record.

3.4.2 ECG Signal

ECG signal processing is quite specific because it requires detection of particular points
(P, Q, R, S and T shown in Figure 5). The whole pipeline has the following structure:

1. Extract ECG signal from MAHNOB-HCI database

2. Remove baseline noise

3. Annotate R-peaks

4. Calculate distance between adjacent beats

5. Annotate other significant points (P, Q, S, T)

6. Calculate statistical features based on obtained points

7. Normalise obtained feature sets based on personal norms

MAHNOB-HCI dataset [SLPP12] contains ECG recorded in three leads, however,
only single lead with the lowest amount of noise was used. Extraction of cardio records
proceeds the same way as for EEG data described in section 3.4.1. Baseline drift is an
artifact in ECG signal that hampers further processing and interpretation. It appears due
to nature of skin conductance and some hardware features. To eliminate this issue, finite
impulse response (FIR) filter was used. For each point of the input signal it calculates a
“filtered value” using formula 11, where y contains filtered values, x is an initial signal,
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bi are mainly chose coefficients for removing noise from specific range, and N is the
parameter called “filter order”, that is also customizable.

y[n] = b0x[n] + b1x[n− 1] + · · ·+ bNx[n−N ] =
N∑
i=0

bi · x[n− i] (11)

The third stage is R-peak detection. Implementation of the algorithm proposed by
Hamilton [Ham05], which is a modification of well known Pan Tompkins [PT85] was
used. It was chosen because of simplicity and computational efficiency. A considered
algorithm has several main stages:

1. tacking the approximation of derivative of the signal,

2. tacking absolute value of the signal,

3. averaging obtained values over an 80 ms window,

4. detecting peaks in the result of the previous stage

5. applying the following rules to refine R-peak location:

(a) ignore all peaks in the range of 400 ms from the highest peak,

(b) if a peaks occurs, check if the raw signal has both positive and negative
slopes; if not, this peak considered as baseline shift or noise,

(c) if the peak is higher than the predefined detection threshold, mark it as R-peak,
otherwise mark it as noise

(d) if no peaks were detected in 1.5 lengths of the previous R-R interval, peak
two times higher than threshold and at least 360 ms for the last R point might
be detected as a new R-peak.

Having R-peaks, further feature extraction and ECG signal annotation can be done.
Calculation of distances between adjacent beats can be done in several ways: first,
calculate differences of indices of nearby R-peaks and work with this data, second,
divide obtained distances by sampling rate, to get values in seconds. Q and S point
correspond to minimum values in specific small range left and right from the R-peak.
Obtaining P and T waves requires additional steps. Firstly, fragments with specific length
should be taken towards left from Q point and toward the right from S point. Secondly,
approximations of first and second derivatives should be taken to find the maximum
value of considered section to find inflection point. Point obtained from the left segment
is P and point obtained from the left segment is T.

Having annotation of whole ECG signal, following statistical features were calcu-
lated:
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• mean, standard deviation, median, minimum, maximum, range (max-min) of
distances between P, Q, R, S, T points of adjacent beats and the same features for
the length of PQ, QS and ST segments;

• mean, standard deviation, median, minimum, maximum from ECG signal ampli-
tude;

• pNN50 is a feature which shows the average number of times when interbeat
interval surpass average interval by 50 milliseconds, studies are saying, that this
measure helps to track parasympathetic activity [ENT84];

• mean, standard deviation, median, minimum, maximum, range of the HRV-
distribution.

Afterwards, the obtained features will be combined in a single vector for further
processing.

3.4.3 GSR, Respiration and Temperature Data

Galvanic skin response, respiration, and temperature are other physiological signals
that carry valuable information for emotional recognition. Their processing is simpler
comparing to ECG or EEG, but still requires several steps that will be described further.
First of all, as mentioned in section 3.1, 30 seconds in the beginning and at the end
of each record imply neutral state. Thus, a baseline for all videos was calculated on
those first segment and subtracted from the reaming part. Afterward, for noise reduction
purposes, Butterworth filter with cutoff frequencies 0.3 Hz and 1 Hz was applied to GSR
and respiration data correspondingly. Next step was to extract the following features
from considered signals. For GSR:

• mean, standard deviation, median, minimum, maximum of the signal,

• mean, standard deviation, median, minimum, maximum, minRatio, maxRatio of
approximations of first and second derivatives of the signal,

• minRatio and maxRatio of GSR signal (the number of maximums and minimums
divided by the length of the signal).

For the respiration data, following features were calculated:

• mean, standard deviation, median, minimum, maximum, range of the signal,

• mean, standard deviation, median, minimum, maximum, range maxRatio of the
approximations of the first and second derivatives,
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• mean, standard deviation, median, minimum, maximum, maxRatio of the pulse of
the signal,

• mean, standard deviation, minimum, maximum, range, maxRatio of approxima-
tions of first and second derivatives of the signal,

• mean of the spectral power from [0, 0.1], [0.1, 0.2], [0.2, 0.3] and [0.3,0.4] Hz
frequency bands,

• mean, standard deviation, minimum, maximum, range, maxRatio of signals am-
plitude, approximations of first and second derivatives of the amplitude of the
signal.

maxRatio is a ratio of the number of extrema to the whole signal length, respiration
pulse is a set of maximums of the respiration signals, mean of the pulse during the minute
is called respiration rate. Temperature features contained mean, standard deviation,
minimum, maximum and range normalized by Z-score (subtracted mean and divided by
standard deviation). The mentioned features were described in papers by Wiem [WL17]
and Wagner [WKA05].

As well as for ECG, GSR, respiration and temperature features can be gathered into
a vector with no regards to different modalities. In the scientific literature it is called
feature-level fusion [RG05].

3.4.4 Data Normalization

Usually, in machine learning and statistics, normalization is a procedure of rescaling
the data using some mathematical transformations. To align a distribution of data to a
normal distribution, mean µ is subtracted from all data. Then, this value is divided by a
standard deviation σ of all data points as shown in equation 12.

Xnorm =
X − µ
σ

(12)

However, this approach does not quite fit user data, because, as were mentioned
earlier, features extracted from the physiological signals contain information about both
emotional and physical state. Therefore, to eliminate these individual properties, the
idem formula as in the equation 12 was used, but each user’s features were normalized
by mean and standard deviation calculated within the samples of the same user.

3.5 Data Classification
This section describes machine learning algorithms for solving classification task that
were employed in this work. Each method performs in a particular way, having various
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complexity, learning and prediction procedures, etc. Because of the mentioned reasons,
their performance may vary. To obtain the best possible result, a set of approaches have
to be considered.

3.5.1 Support Vector Machine

Support vector machine is a supervised algorithm that fits for solving both classification
and regression tasks. The goal of SVM is to set up a hyperplane which will separate all
training samples in two classes. This hyperplane if described by equation 13.

f(x) = wtx+ b (13)

Where wt is a two-dimensional vector according to the number of classes and b is
bias. For multidimensional case, special functions called kernels (14) applied to input x
as shown in equation 15.

k(xi, xj) = ϕ(xi) · ϕ(xj) (14)

f(x) = wtϕ(x) + b (15)

They project the data to higher-dimensional space, making it linearly separable, this
technique also called “kernel trick”. The most used kernels are shown in Table 5.

Table 5. Common SVM kernels.

Name Formula
Polynomial k(xi, xj) = (xi · xj + 1)d

Gaussian k(xi, xj) = exp (−
||xi − xj||2

2σ2
)

RBF k(xi, xj) = exp (−γ||xi − xj||2)
Hyperbolic tangent k(xi, xj) = tanh (xi · xj − δ)

The most fitting hyperplane will be the one, that makes maximum margin between
classes. The decision rule is based on the equation of the obtained hyperplane and forms
in the next way: sign function is applied to the mentioned equation with substituted
values of the point to be classified. An obtained value will be -1 or 1 which would say
about belonging to one or another class. For multiclass classification, an approach called
one-vs-all is used, it means, that multiple hyperplanes are built to separate each class
from all others, joint together.
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3.5.2 Random Forest

Random Forest also called as random decision forest is a method that is based on decision
trees and widely used for classification and regression. It was introduced by Ho in 1995
[Ho95], but algorithm had some shortcomings. In 2001 Breiman [Bre01] improved that
and published a modified version that is still used. To describe the mechanics of Random
Forest, firstly, it should be clarified how a decision tree works. A decision tree is a
binary tree, the primary purpose of this algorithm is to find such variable-value pair
from the training data, which will provide optimal (by some criteria) split. Recursively
repeating described procedure for newly appeared subsets, the algorithm proceeds until
next maximum depth was reached or subset can be no longer divided (such subset is
called leaf), so optimal tree is found. To estimate a new split, the algorithm uses one of
following metrics:

• information gain

• Gini impurity

• mean square

Selection of the metrics depends on the task. Single decision tree tends to overfit
training data, to overcome this issue, a technique called ensemble is used. Ensemble
method makes predictions by combining results of the set of classifiers, in case of
Random Forest, it unites decision trees which are “weak” learners into one “strong”
learner, as Figure 8 illustrates. Depending on the task, different methods for predictions
aggregation can be used. For instance, in classification tasks, it takes mode or most
frequent class, and for regression, it averages predictions.

Figure 8. A Random forest algorithm classification [SLSH17].
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As described earlier, a considered algorithm has word forest in its name because of a
set of trees that it uses for predictions. Whereas, word random stands for a technique
called Bagging or Bootstrap. It is used to train random forest; the main idea is to sample
random subset of training data and features and learn particular decision tree based on it.
Despite the fact that RF is a reliable classifier, it still has some weaknesses, for instance,
in solving regression tasks, because of inability to predict beyond the range of training
data. Also, it may significantly overfit noisy datasets.

3.5.3 Multilayer Perceptron

A multilayer perceptron (MLP) is a supervised learning algorithm that belongs to the
class of feed-forward neural networks. MLP comprises simple hierarchically connected
elements called artificial neurons. These elements are roughly simplified models of
biological neurons [Ros61]. A function of a single artificial neuron – to produce a single
value based on an input vector, as depicted in the Figure 9.

Figure 9. An artificial neuron model [cs2].

To obtain this value, a special function called activation function applies to the dot-
product of the input signal with the neuron’s weight vector plus bias term. Weights
and bias are parameters of a neuron that adjust their values during the training phase to
provide best possible classification results. There are several activation functions that
used in practice. Sigmoid is initial one, its formula 16 and plot 10 are presented below.
As seen, it produces outputs in a range [0, 1].

f(x) =
1

1 + e−x
(16)
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Figure 10. Sigmoid function plot [cs2].

Another activation function is called hyperbolical tangent (tanh), its domain is in [-1,
1]. However, they provide very small gradient is the input value if far from the origin
(very small or very big). This phenomenon sometimes called “gradient vanishing”. To
solve this problem rectified linear unit (ReLu) was used 17. It was applied by Glorot et
al. [GBB11] for deep neural networks training and showed promising results.

f(x) =

{
0 for x < 0

x for x ≥ 0
(17)

MLP can be presented as an acyclic graph with neurons as vertices and connections
between the neurons as edges, so outputs of a neuron on the given layer will be inputs
of neurons on the next layer. Important to note, that neurons on the same level have no
connections within the layer. Graphical representation of three-layer MLP is shown in
Figure 11.

Figure 11. A three-layer neural network [cs2].

Mostly, the last layer of MLPs do not have activation, instead, depending on the task,
a particular function for classification or regression is used. For mentioned learning
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procedure, MLP uses learning technique called backpropagation, it applies iterative
adjustment of weights until achievement of global minima approximation of task-specific
function that is also called loss function. According to universal approximation theorem,
a single-layer neural network with the finite number of nodes can approximate any
continuous function [Hor91].

3.5.4 ANOVA Feature Selection

Analysis of variance (ANOVA) is a statistical technique for comparing means in three
and more groups of numerical values (to perform it on two groups, Student t-test can be
applied). To perform ANOVA, following hypothesis should be tested: a null-hypothesis
says that means of n classes are equal (equation 18), while an alternative hypothesis
assumes that at least one group with the statistically significant different mean (equation
19).

H0 : µ1 = µ2 = ... = µn (18)

H1 : At least one of the µ is different. (19)

For hypothesis test, F-value has to be estimated by calculation of the ratio between
variances: the first one is an inter-group variance and the second one is a variance within
a group. Afterward, obtained F-value and corresponding degrees of freedom are used to
calculate a p-value. If the mentioned p-value is less then α (mostly 0.05), the alternative
hypothesis will be accepted. Concerning feature selection, the described algorithm
applies to all features in the dataset by dividing each into groups by classes (labels)
[BGC14]. Features that are not significantly different regarding labels will be thrown
from the dataset. So, given method allows getting rid of features with low variability for
the corresponding set of labels.

3.5.5 Recurrent Neural Networks

Recurrent neural networks (RNNs) are a specific type of neural networks intended to
process sequential data. They are capable of both classification and regression tasks.
This approach was invented by Hopfield [Hop82] in 1982. Further, in 1993 Schmidhuber
[Sch92] improves this concept by introducing Long-short tern memory (LSTM) which is
still considered as state of the art technique for sequence processing.

A simplified explanation of RNNs can be formulated in the following way. Such
network has some “memory” about computations on the previous steps and uses it to
process subsequent elements. Schematic representation of RNN is shown in Figure 12.
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Figure 12. Folded and unfolded graphical representation of RNN [LBH15].

Unfolding the RNN means depicting recurrent neurons for each element of the
sequence. According to the image above, xt is the input for time point t (xt can be a
single number as well as vector); st is the hidden state for time point t In general, it
is the mentioned “memory” of the network and calculates based on the current input
xt and previous hidden state st−1 by formula st = f(Uxt +Wst+1). f is an activation
function. Mostly, it’s tanh or ReLu described in section 3.5.3. ot is output at the time
t; it can be forwarded to another recurrent layer or function selected for the exact task.
In contradiction to other types of neural networks, RNN uses the same parameters
(U , W , V ) for all steps, which means that the same procedure repeats with different
inputs. This significantly reduces the number of parameters to learn but brings some
disadvantages. st can not “remember” information captured from earlier steps. LSTMs
that were mentioned above can mitigate this problem. LSTMs have no difference in
architecture comparing to RNNs. However, they have a different structure of the hidden
state which is shown in Figure 13.
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Figure 13. A hidden state structure of the LSTM block [Yan16].

In contrast to RNN, LSTM block outputs not only ht values, but Ct values that
provide long-term memory. One more difference, which also shown on Figure 13, is
that LSTM output ht goes to entire model output like in RNNs and to the next block
simultaneously, this mechanism provides short memory to considered model. This type
or recurrent units are very effective in the processing of long-term sequences.

4 Results chapter
In this chapter we will present comparison of results of physiological signal classification
using the data sets that were described in Chapter 3.2. First, formula-based methods
for valence arousal estimation from EEG signal, presented in the Chapter 3.3, were
tested. As expected, they showed not promising results, so we instantly proceed to the
machine learning approach. Next, random forest, SVM, multilayer perceptron and LSTM
(See Chapter 3.5) classifiers were used. To evaluate classification performance we used
a technique called Leave-one-out cross-validation. This technique implies testing the
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model on the records of the single subject, whereas training was performed on all records
from remaining subjects. Thus, having 26 users (initially it was 27, but one user had
corrupted ECG and GSR signals, so we entirely removed him from the experimental
setup), each training was held on 25 subjects (approximately 490 videos, because several
users missed certain records) and tested on the one subject. The process is repeated 26
times and the average classification score is the estimate of the performance of a method.

4.1 Formula-based Methods Evaluation
Methods which estimate valence and arousal values from the EEG signal (See Chapter
3.3) require the calculation of average PSD in specific bands from five channels. In
our experiments, for each record, we computed valence and arousal values from short
fragments of EEG (from 800 to 1200 ms by sliding window on the signal), using
mentioned formulas. Before converting given numbers to the low, medium and high
classes, they were scaled according to the formula in the equation 20, where Xusr is a set
of all obtained values from an exact subject.

xnorm =
x−min(Xusr)

max(Xusr)−min(Xusr)
(20)

Thus, we took into account, that each user experienced minimal and maximal valence
and arousal in different videos. After the scaling, we calculated the histograms for each
record by three groups, to estimate density in low, medium and high notations. Example
of the obtained histograms is shown in the Figure 14.

Figure 14. The histogram of the density of classes.

Taking the most represented class from the histogram as a whole record label is
quite intuitive. However, we noticed, that the “medium” is dominant for most records.
To consider this fact in the classification, we made our final predictions by dividing
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elementwise a histogram of the record with an averaged histogram of the given user and
picking a class that refers to a maximum of tree obtained values. Results of described
classification using labels extracted from the self-assessed valence / arousal values and
from the self-assessed discrete emotional keywords are shown in the Table 6 and Table 7
correspondingly.

Table 6. Formula-based classification results using labels from the self-assessed valence
/ arousal values. Chance level is 0.33.

Method Window Size (seconds) Accuracies
Valence Arousal

By Kirke
800 33.07 31.55

1000 30.22 33.46
1200 26.99 32.12

By Vamvakousis
800 30.60 33.46

1000 31.74 33.26
1200 29.65 32.69

First by Ramirez
800 32.50 32.69

1000 29.27 34.60
1200 26.80 33.07

Second by Ramirez
800 34.03 34.79

1000 33.07 34.60
1200 35.17 35.93
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Table 7. Formula-based classification results using labels from the self-assessed discrete
emotional keywords.

Method Window Size (seconds) Accuracies
Valence Arousal

By Kirke
800 33.07 37.07

1000 29.65 35.74
1200 29.65 35.17

By Vamvakousis
800 31.93 34.98

1000 32.50 35.55
1200 32.12 34.79

First by Ramirez
800 32.12 34.03

1000 26.80 31.55
1200 26.23 342.20

Second by Ramirez
800 33.65 35.17

1000 31.93 37.26
1200 33.26 34.79

According to the Table 7, we concluded that described approach does not work
because the accuracies are not different from random chance. There might be several
reasons for such results. First, mentioned formulas were initially designed to analyze
EEG recorded during audio stimuli, whereas our dataset was collected using video stimuli
which might cause different response of the brain. Another reason is that for usage of
given formula, we need an exact timestamp of the emotional elicitation, to calculate a
valence / arousal value directly after the stimuli. Unfortunately, for MAHNOB-HCI we
don’t have such opportunity.

4.2 Machine Learning Methods Evaluation
4.2.1 EEG Classification

Using EEG processing technique described in the Chapter 3.4.1, we obtained 32× 69
features for 512 records for all subjects. ANOVA feature selection technique was used
after the feature extraction stage. Results of for both valence and arousal classification
using there algorithms and two label sets (extracted from the self-assessed valence /
arousal values (LS1) and from the self-assessed discrete emotional keywords (LS2)) are
shown in the Table 8 .
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Table 8. EEG signal classification results using Leave-one-out cross-validation.

Classifier
Accuracy

Valence Arousal
LS1 LS2 LS1 LS2

Random forest 40.72 49.31 38.52 52.19
SVM 40.38 43.17 40.26 44.86
MLP 39.03 40.29 39.97 44.31

We reached the highest accuracy for valence and arousal (49.32% and 52.19%) on
the second label set (LS2). More detailed results of top classifiers are shown on the figure
15.

Figure 15. Top EEG classification rates using Leave-one-out cross-validation.

Based on presented plot we concluded, that specific subjects have more distin-
guishable or imperceptible brain response to affective videos, whereas the majority of
participants valence and arousal can be predicted with around 50% accuracy.

4.2.2 ECG Classification

ECG was classified by 75 features described in the Chapter 3.4.2 and 26 subjects (20
samples for each user). Feature selection was made by ANOVA procedure. As for
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EEG, we used two label sets and three classifiers. Leave-one-out subject cross-validation
results are shown in the Table 9.

Table 9. ECG signal classification results using Leave-one-out cross-validation.

Classifier
Accuracy

Valence Arousal
LS1 LS2 LS1 LS2

Random forest 37.19 39.34 37.35 40.40
SVM 40.38 38.73 40.26 43.90
MLP 38.70 38.37 38.66 43.90

We reached maximum valence classification score 43.9% on the first label using
SVM algorithm with radial basis function kernel. Also, we obtained equally top scores
(43.90) for arousal on the second label set.

4.2.3 Peripheral Signals Classification

Under peripheral signals, we mean GSR, respiration and temperature data. 89 features
were extracted from the mentioned modalities and classified as a single vector. Fea-
ture selection technique, classification algorithms, and label sets were taken from the
corresponding EEG and ECG experiments. Obtained results are presented in the Table
10.

Table 10. Peripheral signals classification results.

Classifier
Accuracy

Valence Arousal
LS1 LS2 LS1 LS2

Random forest 40.75 43.32 41.68 50.36
SVM 40.38 39.33 40.26 43.90
MLP 39.75 39.35 40.46 44.09

In the given experiment, we obtained 43.32% accuracy for valence classification and
50.36% for arousal classification, both using random forest and second random set.

After three experiments, we decided to find out, which modality provides highest
arousal accuracy for each user. Comparison results are shown on the Figure 16.
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Figure 16. Valence classification results by tree modalities.

As expected, ECG and Peripheral results are visually more related. It can be explained
because they are both regulated by the sympathetic nervous system, while EEG measures
cortex activity.

4.2.4 ECG+Peripheral Singnals Classification

Based on results obtained in previous experiments, we decided to combine ECG, GSR,
respiration and temperature features and classify them by described earlier pipeline.
Acquired results are shown in the Table 11.

Table 11. ECG + Peripheral signals classification results.

Classifier
Accuracy

Valence Arousal
LS1 LS2 LS1 LS2

Random forest 40.17 41.22 39.93 46.25
SVM 40.38 39.33 40.26 43.90
MLP 40.57 38.94 40.26 43.90

As we can see, the combination of modalities worsened our results. The accuracy of
the peripheral signals arousal classification was 50.36%, since, union with ECG provided
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46.25%. Despite that accuracy increased comparing to a single ECG classification.
However, we have to say that the fusion of cardio with peripheral features does not
provide any improvements. It is the same situation for the valence classification.

4.2.5 ECG Classification Using RNN

After receiving unsatisfactory results in ECG features classification, we proposed an
alternative method based on recurrent neural networks. RNN’s imply sequence. Thus,
vectors of 50 RR-intervals were extracted from each ECG records. We applied the
same normalization approach as were used in earlier experiments. However, mean and
standard deviation were calculated using all intervals of given subject, and each interval
was normalized by obtained values. Afterward, we trained RNN and LSTM models on
two known feature sets for valence and arousal. The evaluation was held by the idem
Leave-one-out subject cross-validation. Results are shown in the Table 12.

Table 12. ECG + Peripheral signals classification results.

Classifier
Accuracy

Valence Arousal
LS1 LS2 LS1 LS2

RNN 34.13 36.96 30.55 33.81
LSTM 31.98 32.17 37.61 38.25

We concluded, that given approach not properly worked for valence estimation.
However, for arousal prediction, LSTM model provided 38.25% accuracy, which is even
lower than results from the first experiment, but higher than random choice. It must be
said, that for some users they are higher or equal. (See Figure 17). Thus, we don’t have
to reject this method. It can be improved by adding more training samples or the increase
of the input sequence length.
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Figure 17. Leave-one-out cross-validation results of two ways of ECG classification.
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5 Conclusion
The main goal of this thesis was to compare the methods for emotional state recognition
based on physiological signals and several ways for categorization of emotions. To
solve emotional recognition task we used heuristic and machine learning classification
techniques. For emotion categorization, we considered Eckman’s paradigm of discrete
emotional states and dimensional model which represents emotions by matching them
onto the Cartesian plane with valence and arousal axis.

Then, we introduced contemporary methods for emotional elicitation and subjects
feedback collection. Two mentioned emotional paradigms have corresponding self-
assessment gathering technique. Thus, we decided to compare how they affect on
emotional state recognition. For these purposes, we needed a dataset, so an overview
of existing human affective states databases was provided. Afterward, MAHNOB-HCI
database was selected because of its quality and a wide range of modalities. We attempted
to classify physiological signals from the dataset in low, medium and high valence and
arousal, which, in turn, were extracted from the self-assessed discrete emotional keywords
and from the valence / arousal scale provided by SAM.

Performing classification experiments, we obtained best highest leave-one-out accu-
racy scores for EEG and peripheral signals classification using machine learning. Usage
of the label set extracted from the discrete emotional keyword provided better results
in most experiments. This fact can be accounted in further datasets collections and
processing. Also, we proposed a novel approach for heart rate data classification using
RNNs. However, it was not successful because of the small size of the dataset.

For the future work, we are planning to test considered methods on the datasets with
the higher number of subjects and trials for each person. Another thing to try is to collect
and analyze a dataset with the precisely known moment of emotional invocation. In
our opinion, it can be reached by using short, same length affective videos or affective
images.
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