
UNIVERSITY OF TARTU
FACULTY OF SCIENCE AND TECHNOLOGY

Institute of Computer Science
Computer Science Curriculum

Anti Ingel

Machine Learning in VEP-based BCI
Masters’s Thesis (30 ECTS)

Supervisor: Ilya Kuzovkin, MSc
Co-Supervisor: Raul Vicente, PhD

Tartu 2017

Machine Learning in VEP-based BCI

Abstract

In this thesis, a classification method for SSVEP-based BCI is proposed. The classification
method is based on simple comparisons of extracted feature values and thresholds and
it involves a way of optimising the thresholds. Optimising the thresholds is formalised
as a maximisation task of the information transfer rate of BCI, but instead of using the
standard formula for calculating ITR, more general formula is derived. This allows the
thresholds to be automatically optimised and avoids calculating incorrect ITR estimate.
The proposed method shows good performance in classifying targets of a BCI and achieves
ITR as high as 60 bit/min. The proposed method also provides a way to reduce false
classifications, which is important in real-world applications. BCIs have high potential
to be used in the field of medicine as they provides a way for severely disabled people to
control external devices.

Keywords

Brain-computer interface (BCI), electroencephalography (EEG), steady-state visual evoked
potential (SSVEP), information transfer rate (ITR), maximisation, threshold optimisa-
tion, mutual information

CERCS: P170 Computer science, numerical analysis, systems, control

2

Masinõpe visuaalselt esilekutsutud potentsiaali-
del põhinevas aju-arvuti liideses

Lühikokkuvõte

Antud töös esitatakse visuaalse stiimuliga esilekutsutud potentsiaalidel põhineva aju-
arvuti liidese (AAL) jaoks klassifitseerimisreegel, mis põhineb tunnuste ja lävendväärtus-
te omavahelisel võrdlusel. Klassifitseerimise jaoks optimaalsete lävendväärtuste leidmine
formaliseeritakse maksimeerimisülesandena, kus maksimeeritakse AALi informatsiooni
edastamise kiirus, mille arvutamiseks tuletatakse eraldi valem, et vältida standardse va-
lemi poolt vajalikke eeldusi. Esitatud reegel näitab AALi klassifitseerimisülesandes häid
tulemusi, saavutades informatsiooni edastamise kiiruseks kuni 60 bitti minutis. Samuti
võimaldab pakutud reegel vältida vale-ennustusi, mis on oluline AALi kasutamiseks iga-
päevaelus. AALid omavad suurt potentsiaali medistsiini valdkonnas, kuna võimaldavad
raske puudega või halvatud isikutel seadmeid kontrollida.

Võtmesõnad

Elektroensefalograafia EEG, aju-arvuti liides (AAL), visuaalselt esilekutsutud potent-
siaal, informatsiooni edastamise kiirus, maksimiseerimine, otsustuslävi, optimiseerimine

CERCS: P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine (automaatjuhti-
misteooria)

3

Table of contents

Introduction 5

1 Background information 7
1.1 Biological background . 7

1.1.1 Electrical activity in the brain . 7

1.1.2 Electroencephalography . 8

1.1.3 Steady-state visual evoked potential 9

1.1.4 Conclusion . 10

1.2 Brain-computer interface . 11

1.2.1 Visual stimuli . 11

1.2.2 Signal pipeline . 12

2 Feature extraction methods for SSVEP-based BCI 13
2.1 Power spectral density analysis . 13

2.2 Canonical correlation analysis . 14

2.3 Likelihood ratio test . 16

2.4 Minimum energy combination . 17

2.5 Continuous wavelet transform . 19

3 Related work 21
3.1 SSVEP dataset for offline experiments 21

3.2 Performance measures . 21

3.3 Articles using BIOSEMI dataset for BCI evaluation 22

3.3.1 Features extraction based on subspace methods with application
to SSVEP BCI . 23

3.3.2 A prototype of SSVEP-based BCI for home appliances control . . 25

3.3.3 Bio-inspired filter banks for SSVEP-based brain-computer interfaces 26

3.3.4 Implementation of bilinear separation algorithm as a classification
method for SSVEP-based brain-computer interface 28

3.3.5 Frequency detection in medium and high frequency SSVEP based
brain computer interface systems by scaling of sine-curve fit am-
plitudes . 29

4

3.3.6 Principal component analysis-based spectral recognition for SSVEP-
based brain-computer interfaces 32

3.3.7 Conclusion . 33

4 Proposed classification method 35
4.1 Classifying with cut-off thresholds . 35

4.2 Online ITR estimation . 37

4.3 ITR for unbalanced classes, predictions and accuracies 38

4.4 Calculating mutual information for different thresholds 40

4.5 The rate of change of ITR . 46

4.6 Method of finding the thresholds . 48

4.7 Empirically choosing parameters . 49

4.8 Combining features from different extraction methods 49

5 Results 53
5.1 Feature value change over time . 53

5.2 Comparison to Random Forest . 54

5.3 Comparison to related work . 55

Conclusion 57

References 58

Appendices 60
I Code of the application . 61

II Acronyms . 62

III Glossary . 64

Licence 66

5

Introduction

Direct communication channel between the brain and an external device that does not
need to depend on any of the conventional input channels is called a brain-computer
interface (BCI). BCI allows a user to control devices directly with their brain activity. It
works by measuring the brain activity of the user and tries to find certain patterns from
the recording.

One of the brain activity patterns that has turned out to be quite efficient in implement-
ing BCIs is called steady-state visual evoked potential (SSVEP). It is a brain response
to a visual stimulus. Over the recent years, many methods for detecting this pattern
from brain activity have been proposed. These methods are based on detecting certain
frequencies in the brain signal and different commands that can be sent to the external
device correspond to different frequencies.

There are multiple ways to estimate the amount of SSVEP in the brain activity but often
in the implemented BCIs only one of them is used. Common way to detect commands
with the BCI is to estimate the amount of SSVEP in the brain activity and then use a
simple classification rule to make a decision about the users chosen command.

These classification rules can be very simple, for example, value has to be larger than a
threshold, or they can be complicated relationships between different frequencies present
in the signal that are learned by machine learning. In this work, a simple classification
rule that uses thresholds is proposed and a way of optimising these thresholds is derived.
Optimising the thresholds will be formalised as a maximisation task of a performance
measure of BCIs and a solution for it will be derived starting from basic assumptions.

The first chapter of this thesis gives background information about the biology and de-
scribes author’s previous work. The previous work includes an implemented BCI which
was improved as a practical part of this thesis.

The second chapter describes the feature extraction methods that are used to deter-
mine the amount of SSVEPs present in the user’s brain signal. These feature extraction
methods are all implemented in the author’s BCI.

Third chapter gives overview of the related work. In particular, it describes the dataset
of SSVEP data that is used to perform offline experiment in this thesis and discusses the
articles where the same dataset was used to evaluate a BCI.

Fourth chapter is the contribution of the author. This is the chapter where the classifi-
cation rule for SSVEP based BCI is presented and a way of optimising the thresholds for
the classification rule is derived.

Finally, the fifth chapter gives overview of the obtained results. The performance of the
proposed classification method is compared to standard machine learning method and to
the articles described in Chapter 3.

6

1 Background information

1.1 Biological background

The aim of this section is to describe an event-related potential (ERP) of the brain
called visual evoked potential (VEP) and to discuss how it can be measured and what
important properties it has. How steady-state visual evoked potentials (SSVEPs) are
used in SSVEP-based brain-computer interfaces (BCIs) is discussed in Section 1.2 and
Chapter 2. This chapter provides a very brief overview of the topics, more detailed
description can be found in the author’s previous work [14].

1.1.1 Electrical activity in the brain

The brain is composed of two classes of cells—nerve cells or neurons and glial cells or
glia. Neurons are the cells that are more important from the point of view of SSVEP-
based BCIs, since they interact with each other by sending electro-chemical signals and
these signals can be measured with high temporal resolution using electroencephalography
(EEG) devices [6].

Typically a neuron is composed of a cell body, multiple branching nerve endings called
dendrites that are used to receive signals from other neurons, and one nerve fibre called
axon that is used to send signals to other neurons. The connections between axons and
dendrites through which a signal is sent from one neuron to another are called synapses.
The structure of a neuron can be seen in Figure 1.1a.

Neurons send signals by transporting ions across the cell membrane. The act of sending
a signal is called action potential and it works by moving higher concentration of positive
ions along an axon to a synapse through which the signal is sent to another neuron. The
neuron that receives the signal is called postsynaptic neuron. The signal can make a
postsynaptic neuron more prone to send a signal itself or it might inhibit it from sending
a signal.

Based on an article by Buzsaki et al. [4], the signal causes ions to flow into the postsynaptic
neuron. This in turn causes a balancing flow of ions from inside the neuron to flow out
of it to achieve electroneutrality [4]. This produces different electric potentials near the
locations where ions enter the cell and where ions exit the cell. These different electric
potentials form a current dipole. See Figure 1.1b for illustration.

Although action potentials generate stronger currents than current dipoles, current dipoles
are more likely to have synchronous activity which is required to produce large enough
electric potential to be able to measure it from the scalp [4]. For the current dipoles to
add up and produce large electric potential, the neurons have to be oriented the same
way, be perpendicular to the surface of the brain as shown in Figure 1.1b and approxi-
mately 108 neurons have to have synchronous electrical activity to create a measurable
field [22].

7

(a) Neurons and a chemical synapse [28,
p. 17].

(b) Current dipole generated by a
neuron [24, p. 669].

Figure 1.1: Neurons and a current dipole.

1.1.2 Electroencephalography

Neuroimaging method called EEG can be used to measure the electric potentials gen-
erated by current dipoles. EEG device consists of electrodes connected to a voltmeter,
which measures the electric potential difference between two electrodes. Thus the EEG
measures the difference between the electric potential of a fixed reference electrode and
other electrodes. Commonly the electrodes are placed on the scalp according to 10/20,
10/10 or 10/5 electrode placement system that uses in most cases the first letter of the
name of the brain lobe above which an electrode is located and a number to code the
location of the electrode on the scalp [16].

In this thesis, a consumer-grade EEG device called Emotiv EPOC was used. The Emotiv
EPOV device has 14 electrodes which are located at AF3, AF4, F3, F4, F7, F8, FC5,
FC6, P7, P8, T7, T8, O1, O2 and two reference electrodes that are located either at P3
and P4 or behind the ears. The locations on the scalp are shown in Figure 1.2. Emotiv
EPOC has a sampling rate of 128 Hz, which means that 128 voltage measurements are
made in a second for every electrode.

The reason for using consumer-grade device was that these devices are relatively easy to
use and affordable for a person in need to buy. Although research has shown that Emotiv
EPOC performs significantly worse than a medical-grade devices [8], the performance of
Emotiv EPOC is good enough to implement an SSVEP-based BCIs [21, 38, 19, 13].

1http://emotiv.wikia.com/wiki/Emotiv_EPOC

8

Figure 1.2: Electrode locations used by Emotiv EPOC1. Used locations are marked with
orange circles.

1.1.3 Steady-state visual evoked potential

This section gives an overview of the steady-state visual evoked potential (SSVEP) which
is a brain’s response to a specific visual stimulus. In general, brain potential evoked by
some event is called an event-related potential (ERP). ERPs are important in implement-
ing BCIs, because ERPs are measurable with EEG devices using averaging techniques [18]
and specific enough to be controlled by the user of the BCI.

VEP is a type of ERP, see Figure 1.3 for an example. VEPs are elicited by a visual
stimuli, which in case of SSVEP-based BCIs is often a flickering square on a computer
screen [37]. The visual stimuli of SSVEP-based BCIs are called targets. Since the visual
processing centre is located posteriorly in the brain, when measuring VEPs, the EEG
electrodes have to be placed on the back of the head. For the Emotiv EPOC device, the
electrodes closest to the visual processing centre are O1 and O2, see Figure 1.2.

One blink of a visual stimulus produces a response as shown in the 2 Hz subplot in Fig-
ure 1.3. But as the speed of blinking increases, the consecutive VEPs merge together and
form one continuous response called SSVEP [34]. If the stimulus is just a flickering square,
then the elicited SSVEP’s fundamental frequency is equal to the flickering frequency. In
addition to flickering frequency of the target, also its harmonics might be elicited [10].
Detecting SSVEPs is preferred over detecting VEPs, because SSVEP is continuous and
thus should always be present in the EEG signal.

9

Figure 1.3: VEPs elicited by slow frequency stimulus and SSVEPs elicited by high fre-
quency stimulus [34, p. 259]. The square waves denote the state switches or the flickering
of the target and the smooth curve denotes the brain response.

As shown in Figure 1.3, targets with different flickering frequency produce responses with
different frequencies. Another important property is that the stimulation of central visual
field produces larger VEPs than stimulation of peripheral vision [11]. Using these two
properties, it is possible to design visual stimuli that can be used in implementing a
SSVEP-based BCI.

Common way of eliciting SSVEPs in a user of a BCI is displaying several targets on the
computer screen that each flicker with different frequency and each of them corresponds
to a different command that the BCI can process. Then, if the user is focusing on one
of the targets, it elicits a brain response with known fundamental frequency and the rest
of the targets do not elicit as large response. This response can be detected by recording
the brain activity with EEG device and analysing the recording with feature extraction
methods. In practice, detecting SSVEPs can be challenging due to the noisiness of the
EEG data and differences between people.

1.1.4 Conclusion

When a user of a SSVEP-based BCI is presented with a visual stimulus that flickers
with a fixed frequency, the user sees this flickering and his brain processes the signal in
the visual processing centre. This processing of the information produces synchronised
activity of neurons in the visual processing centre. This synchronised activity generates
current dipoles that add up together so that it is possible to measure this activity from
the scalp of the user using an EEG device. An important property of the brain’s response
to the stimulus is that it has the same fundamental frequency as the flickering frequency
of the stimulus. Feature extraction methods described in Chapter 2 use this property to
detect the elicited SSVEPs and the extracted features are used to predict the command
chosen by the user.

10

1.2 Brain-computer interface

This chapter gives an overview of the BCI implemented as a practical part of the author’s
previous work [14]. This BCI was improved as a practical part of this thesis. Three of the
most important improvements are the following. First, three additional feature extraction
methods were added to the BCI that are described in sections 2.3–2.5. Second, previously
the BCI did not use machine learning to classify the targets but as a practical part of this
thesis, machine learning and some other improvements were added to the BCI. Third,
the classification method proposed in Chapter 4 of this work was implemented.

1.2.1 Visual stimuli

The BCI used in this thesis uses a computer screen to present visual stimuli to the user,
see Figure 1.4 for an example. Since a computer screen has a fixed refresh rate, there is
a limit on what flickering frequencies can be used. Refresh rate shows how many frames
per second the computer screen can display. For example, if the refresh rate is 60 Hz,
then the maximum flickering frequency that can be used is 30 Hz. Another complication
is that with the simplest method, only these flickering frequencies that exactly divide the
refresh rate can be used. Other frequencies can still be used and detected, but designing
the blinking sequence is more complicated [21].

As already mentioned in Section 1.1.3, visual stimulation with fixed frequency elicits a
response in the brain that has the same fundamental frequency as the flickering, but
in addition to this frequency, also its harmonics might be present in the response [10].
Research has also shown that these frequencies that are present in the flickering waveform
are more likely to be also present in the SSVEP [26]. This might pose problems when
target frequencies that are integer multiples of each other are used.

A user can send commands through the BCI by looking at one of the targets presented
to him on a computer screen. Each target corresponds to a command that the user can
choose and by focusing his gaze on a target, SSVEP that can be detected by the BCI
is elicited. This way, the user can control devices by just focusing his gaze to different
regions on a computer screen.

Figure 1.4: Example of visual stimuli on a computer screen [14]. The picture in the
middle denotes video stream from the robot that the BCI is used to control. Arrows
denote possible commands and the green arrow denotes user’s current choice.

11

1.2.2 Signal pipeline

The signal pipeline implemented for the BCI as a part of the author’s previous work [14]
includes detrending, filtering, windowing, feature extraction, interpolation and finally
classification. Previously implemented feature extraction methods were power spectral
density analysis (PSDA) and canonical correlation analysis (CCA), which along with
added feature extraction methods are discussed in Chapter 2.

Detrending is removing a constant or linear trend from the signal as a result of which the
mean of the signal will be zero. This is important for the feature extraction methods,
because some of these, like CCA, make the assumption that the input signal has zero
mean. Detrending is also a necessary step before windowing the signal, which can be
used with feature extraction methods based on Fourier transform. Detrending can be
performed on segments of the signal separately instead of detrending the whole signal at
once.

Windowing is used to smooth the ends of a signal. This is useful when using feature
extraction methods based on Fourier transform, because Fourier transform assumes that
the signal is periodic. If the signal under consideration is of finite length, it is thought of
as repeating itself infinitely many times. This concatenation might, however, introduce
steep jumps to the signal if the difference between the first value and the last value of the
signal is too large. Windowing is essentially an element-wise multiplication of the signal
with a function that has largest values in the middle of the range and near-zero values
near the ends.

Filtering is used for removing noise from the signal. It is used to remove certain frequen-
cies from the signal. Filters can be designed for example to remove all frequencies that
are smaller than a given frequency, all frequencies that are larger than given frequency or
all frequencies that are between two given frequencies. Due to the noisiness of the EEG
recording, filtering can be a useful step before performing feature extraction to decrease
the negative effect of noise on the feature extraction and classification.

Feature extraction methods are used to extract information about the frequencies that
should be present in the EEG recording when the user is looking at the visual stimuli.
The frequencies elicited by visual stimuli and other properties of SSVEP were discussed
in Section 1.1.3. Usually feature extraction methods give feature values for each target
frequency for each time step. Some methods, like PSDA, give separate results for the
target frequency and its harmonics. These features can be used for classifying, which
target is the user looking at.

Interpolation can be used if the feature extraction method gives results for other frequen-
cies than the target frequencies of the BCI. Then the known values for other frequencies
can be used to estimate values for target frequencies.

The classification method implemented in the author’s previous work [14] does not use
machine learning. It uses manually chosen weights and thresholds. Weights show how
much each feature affects the final result and threshold is used for filtering out as much
false positive results as possible. This classification method uses the assumption that
higher feature values for a target mean that the corresponding target is more likely the
one chosen by the user. But this might not always be the case. Machine learning can
be used to find which features are better at classifying the targets and more complicated
relationships between the feature values and targets can be found with machine learning.

12

2 Feature extraction methods for SSVEP-
based BCI

This chapter gives an overview of the feature extraction methods used in the implemented
BCI. The feature extraction methods are used to extract useful information from the
EEG signal that can be used to classify the commands. The feature extraction methods
called power spectral density analysis (PSDA) and canonical correlation analysis (CCA)
were already discussed in author’s previous work [14]. In addition to those method the
improved version of the BCI has minimum energy combination (MEC), likelihood ratio
test (LRT) and continuous wavelet transform (CWT) feature extraction methods.

2.1 Power spectral density analysis

Power spectral density analysis (PSDA) method was used already in 2002 by Cheng et
al. [5]. This section provides insights to the theory behind the method and describes how
it can be used to implement a SSVEP-based BCI. Parts of this section are taken from a
report written by the author for a project of course Research Seminar in Data Mining in
University of Tartu.

PSDA is a common method used to determine the amplitude of different frequencies
present in a signal. It is based on discrete Fourier transform which decomposes a signal
into a set of sine and cosine waves or equivalently to a set of complex exponentials. If
f(t) is the actual signal and fN(t), t ∈ {0, 1, . . . , N − 1} represents the recording of the
signal, then

fN(t) =
N∑

k=−N

cke
2πikt (2.1)

which approximates the actual signal f(t) and the approximation improves as N → ∞.

Discrete Fourier transform finds the coefficients ck of the linear combination (2.1) by the
following formula

ck =
N−1∑
t=0

fN(t)e
−2πikt/N

which can be represented as a matrix multiplication
c0
c1
c2
...

cN−1

 =

1 1 1 . . . 1
1 W W 2 . . . WN−1

1 W 2 W 4 . . . W 2(N−1)

...
1 WN−1 W 2(N−1) . . . W (N−1)(N−1)

f(0)
f(1)
f(2)

...
f(N − 1)

where W = e−2πi/N . An algorithm for performing this multiplication with O(N logN)
complexity is called fast Fourier transform (FFT).

13

To be able to compare the amount of different frequencies present in the signal f(t),
one can find the amplitudes of the complex exponentials by taking the magnitude of the
complex number ck. Thus |ck| is the amplitude of the frequency

k · fs
N

(2.2)

where k ∈ {0, 1, . . . , bN − 1c/2} and fs is the sampling rate in Hz. The frequencies
obtained by formula (2.2) are called frequency bins. By squaring the magnitudes one gets
a periodogram, an estimation for the power spectral density (PSD) of the signal f(t), and
hence the name power spectral density analysis.

The final aspect to consider in this method is that the targets with higher flickering
frequency produce SSVEPs with smaller amplitude and that there is a lot of noise present
in the EEG recording, especially when using a consumer-grade device. Thus it might be
more beneficial to compare signal-to-noise ratios (SNRs) instead of the amplitudes or the
powers themselves, for example by using formula [3]

SNR(ft) =
2P (ft)

P (ft−1) + P (ft+1)
(2.3)

or more generally [33]

SNR(ft) =
nP (ft)∑n/2

i=1 (P (ft−i) + P (ft+i))
(2.4)

where P is the periodogram, f1, . . . , ft, . . . , fN represent the frequency bins in increasing
order, ft is the target flickering frequency and n is the number of adjacent frequency bins
used in the calculation of SNR. Either SNRs or powers for each target and its harmonic
frequencies at each time step can be used as features for classification.

More recent feature extraction method called minimum energy combination (MEC) uses
spatial filtering to try to overcome some of the weaknesses of PSDA method [9, 30].

2.2 Canonical correlation analysis

Canonical correlation analysis (CCA) feature extraction method has been one of the most
applied methods in SSVEP-based BCIs and it has shown very good results even with a
consumer-grade EEG device [13, 21]. The method was introduced by Lin et al. [20] and
this section mainly follows their description of the method with some additional insights
to the theory behind the method. Parts of this section are taken from a report written
by the author for a project of course Research Seminar in Data Mining in University of
Tartu.

CCA provides a way to calculate the correlation between two sets of random variables.
It was introduced by Harold Hotelling in 1936 [12].

In SSVEP-based BCI setting, one set of random variables is the multichannel EEG record-
ing and the other is a set of reference signals [20]. Each target has its own set of reference
signals based on the flickering frequency of the target. The reference signals are sine and
cosine waves with the same frequency as the target flickering frequency and also some of

14

its harmonics. Usually two or three harmonics are used. For a target m with frequency
fm the set of reference signals is

Ym =

sin(2π · fm · t)
cos(2π · fm · t)

...
sin(2π ·Nh · fm · t)
cos(2π ·Nh · fm · t)

 , t =
1

fs
,
2

fs
, . . . ,

N

fs
(2.5)

where fs is the sampling rate, Nh is the number of harmonics used and N is the length
of the recorded signal [20].

Similarly the multichannel EEG recording can be organised a into matrix X where each
row contains signal from one channel.

CCA finds two new sets of features whereas the features of one set are linear combinations
of the rows of X and the features of the other set are linear combinations of the rows
of Ym. Thus given a matrices of weights WX and WYm the new features are WXX and
WYmYm.

The new features are chosen so that the corresponding rows of WXX and WYmYm are
maximally correlated, meaning that the first row of WXX is maximally correlated with
the first row of WYmYm and similarly with other rows. The first rows are called the first
pair of canonical variates. The subsequent rows have additional constraint that they have
to be uncorrelated with the previous canonical variates. The rows of WXX themselves
have maximal possible variance and similarly the rows of WYmYm.

The problem of finding the first pair of canonical variates can be formulated as a max-
imisation task

max
~a,~b

Cor(~aTX,~bTYm) =
~aTXY T

m
~b√

~aTXXT~a~bTYmY T
m
~b

(2.6)

where ~a is a column vector representing the first row of WX and ~b is a column vector
representing the first row of WYm .

The solution to this problem can be obtained by finding the singular value decomposition
(SVD) of the matrix

K = Σ
− 1

2
XXΣXYΣ

− 1
2

Y Y

where

ΣXY = Cov(X,Y) = XY T .

SVD gives matrices U with columns ~ui, V with columns ~vi where i ∈ {1, . . . , rank(K)}
and D such that

K = UDV T

and the vectors ~a and ~b for the problem (2.6) can be calculated as

~a = Σ
− 1

2
XX~u1

~b = Σ
− 1

2
Y Y ~v1

15

which can be used to calculate the first canonical variates. By replacing ~u1 and ~v1 with
other columns of matrices U and V , other canonical variates can be calculated. To the
best of the author’s knowledge, however, only the first canonical variates have been used
in SSVEP-based BCI feature extraction methods so far.

To identify the target that the user is looking at, one can compare the correlations
obtained by formula (2.6) for different targets and the target whose set of reference
signals has the highest canonical correlation with corresponding ~aTX can be considered
to be the target the user is looking at. Therefore, the canonical correlations between the
EEG and each target’s reference signals at each time step can be used as features for
classification.

The advantage of this method over PSDA is that it is inherently multidimensional which
means that CCA method can analyse signals from multiple EEG channels at once. In
case of PSDA the features have to be extracted separately for each channel.

2.3 Likelihood ratio test

Likelihood ratio test (LRT) method was introduced by Zhang et al. [35] and this section
mainly follows his description of the method with some additional insights to the theory
behind the method.

LRT feature extraction method is based on a statistical test. It compares a dataset
obtained by sampling against a synthetic data from idealised model. In the case of
SSVEP-based BCI, the idealised data is the same that was used in CCA method as
reference signals (2.5) and the data obtained by sampling is the EEG signal. The test is
used separately for each target as each target has separate set of reference signals.

Since the goal of a feature extraction methods for SSVEP-based BCIs is to detect SSVEPs
in the EEG signal, the statistical test in LRT method is used to find how unlikely it is
that the recorded EEG data is uncorrelated with the reference signal. Therefore the null
hypothesis for the test is that the signals are uncorrelated and the alternative hypothesis
is that they are correlated.

Assumptions on the distribution are that both sets of signals are normally distributed.
Symbolically, by representing the multichannel EEG signal as a random vector ~X and
the reference signals as a random vector ~Ym the assumption is that [35]

~X ∼ N(µX ,ΣXX) ~Ym ∼ N(µYm ,ΣYmYm)

where ΣXX and ΣYmYm denote the covariance matrices of ~X and ~Ym.

For convenience, the two random vectors will be combined into one vector [35]

Z =

(
~X
~Ym

)
, ~µ =

(
~µX

~µYm

)
, Σ =

(
ΣXX ΣXYm

ΣYmX ΣYmYm

)
.

Using this notation, the null hypothesis H0 is that ΣXYm = 0 and the alternative hypoth-
esis H1 that ΣXYm 6= 0 where 0 denotes a null matrix [35]. A null matrix is a matrix
consisting of only zeroes.

16

Now given a set of observations ~z1, . . . , ~zn, the LRT statistic can be calculated as [35]

λ =
maxH0 L (~µ,Σ | ~z1, . . . , ~zn)

maxH0∪H1 L (~µ,Σ | ~z1, . . . , ~zn)
(2.7)

where L denotes the likelihood and it can be calculated using probability density function
f which for multidimensional normal distribution is as follows

L (~µ,Σ | ~z1, . . . , ~zn) = f (~z1, . . . , ~zn | ~µ,Σ) =
n∏

i=1

1√
(2π)m|Σ|

exp
(
−(~zi − ~µ)TΣ−1(~zi − ~µ)

2

)
.

The maximisations in (2.7) mean that the parameters ~µ and Σ are sought so that the
corresponding quantities are maximised while corresponding conditions are satisfied—the
condition is ΣXYm = 0 for the numerator and ΣXYm = 0∨ΣXYm 6= 0 for the denominator.

This means that the maximum likelihood estimates ~̂µ and Σ̂ are sought for the parameters
~µ and Σ. For given observations ~z1, . . . , ~zn these estimates can be calculated as

~̂µ =
1

n

n∑
i=1

~zi, Σ̂ =
1

n

n∑
i=1

(~zi − ~̂µ)(~zi − ~̂µ)T (2.8)

These estimates and matrix properties can be used to rewrite the equation (2.7) as [35]

λ =
|Σ̂|n/2

|Σ̂XX |n/2 · |Σ̂YmYm|n/2
.

Since λ shows how different ~X and ~Ym are, 1 − λ shows how similar these are [35]. To
take into account the dimensions, p-th root of λ can be taken before subtraction [35]

Cm = 1−

(
|Σ̂|n/2

|Σ̂XX |n/2 · |Σ̂YmYm|n/2

)1/p

where p is the dimension of Ym. If ~X and ~Ym are identical, then Cm = 1; if ~X and ~Ym
are independent, then Cm = 0 [35]. Cm can be calculated for each target at each time
step and used as features in classification.

This method is similar to the CCA feature extraction method since both of these methods
try to find similarities between the EEG signal and the same set of reference signals.

2.4 Minimum energy combination

Minimum energy combination (MEC) feature extraction method was introduced by Friman
et al. [9] and it has been shown to achieve very high information transfer rate (ITR) [30].
This section follows the description of the method given by Volosyak [30].

MEC method makes the assumption that the EEG data yi(t) from channel i ∈ {1, 2, . . . , Ny}
can be represented as a sum of sine and cosine waves and noise signal Ei,t

yi(t) =

Nh∑
k=1

(ai,k sin 2πkft+ bi,k cos πkft) + Ei,t (2.9)

17

where Nh is the number of harmonics used [30]. By inspecting the equation (2.9), it can
be seen that it can be represented in a matrix form

Y = XG+ E

where X is the matrix defined as the matrix of reference signals in (2.5), G is a matrix
containing all the amplitudes ai,k and bi,k of the sine and cosine waves in X, E is the
noise and Y contains the EEG signal for all the channels.

Next, the MEC method finds linear combinations sj = Y wj with weights wj of the signals
yi such that wj minimises

min
wj

wT
j Ỹ

T Ỹ wj (2.10)

where

Ỹ = Y −X(XTX)−1XTY

is the orthogonal projection of the EEG data onto the sine and cosine waves [30]. By
definition, Ỹ should not contain SSVEP activity. Therefore, by minimising (2.10), the
noise and nuisance component of the signal are minimised, or in other words, the energy
of Ỹ is minimised and hence the name minimum energy combination.

The problem (2.10) is solved by finding the eigenvector v1 corresponding to the small-
est eigenvalue λ1 of the matrix Ỹ T Ỹ . Additional uncorrelated channels can be added
by choosing the next eigenvectors v2, v3, . . . corresponding to next smallest eigenvalues
λ2, λ3,

The weight vectors wj can therefore be organised into a matrix

W =

(
v1√
λ1
, . . . ,

vNs√
λNs

)
where Ns can be chosen as the smallest value for which∑Ns

i=1 λi∑Ny

i=1 λi
> 0.1

where Ny is the number of EEG channels [30].

Therefore the new signals sj, j ∈ {1, 2, . . . , Ns} can be also organised into matrix

S = YW.

The features used for classification can be calculated for a target by using its correspond-
ing reference signals Xk [30]

P̂ =
1

NsNh

Ns∑
l=1

Nh∑
k=1

sTl XkX
T
k sl.

Features can be normalised over all targets

pi =
P̂i∑Nf

j=1 P̂j

18

where Nf is the number of targets. Volosyak [30] used instead a softmax function to
enhance the gap between the features

p′i =
eαpi∑Nf

j=1 e
αpi

where α was set to 0.25. Therefore, for each target, P̂ can be calculated and transformed
to pi or p′i which can be used as features for classification.

2.5 Continuous wavelet transform

Zhang et al. [36] proposed a BCI system based on continuous wavelet transform (CWT).
This method is similar to PSDA method, but instead of Fourier transform, CWT is used.

While PSDA method decomposes the EEG signal into complex exponentials, the CWT
method decomposes the signal into time-shifted and scaled wavelets. The shifted and
scaled wavelets are generated from a chosen mother wavelet. Fourier transform can be
viewed as a special case of CWT with mother wavelet ψ set to

φ(t) = e−2πit.

In the work by Zhang et al. [36] different mother wavelets were compared and complex
Morlet wavelet was chosen as mother wavelet

φ(t) =
1√
πfb

e2iπfcxe
−x2

fb

where fb is the bandwidth parameter and fc the wavelet centre frequency.

The formula of CWT for signal x(t) and mother wavelet φ(t) is

W (a, b) = 〈x(t), φa,b(t)〉 =
∫ ∞

−∞
x(t)φ∗

a,b(t) =
1√
a

∫ ∞

−∞
x(t)φ∗

(
t− b

a

)
(2.11)

where a is the scale factor and b the shift factor [36]. The discrete form of the transpose
is

W (a, b) =

√
a

N

N−1∑
k=0

X(k)Φ(ak)e
i2πbk
N

where b ∈ {0, 1, . . . , N−1}, N is the number of samples of EEG data and X(k) and Φ(k)
denote the discrete Fourier transform of the sampled signal x(n) and discrete wavelet
φ(n) [36].

To interpret the wavelet coefficients, scale factor a can to be converted into frequency f

f =
fs · f0
a

where fs is the sampling frequency and f0 the centre frequency of the wavelet in Hz [36].

19

The average energy of wavelet coefficientsW (f, b) for every EEG channel can be computed
as [36]

Pf =
1

N

N∑
i=1

|W (f, i)|2.

Therefore Pf for each EEG channel for each target frequency f can be calculated and
used as features for classification in SSVEP-based BCI.

The advantage of this method over PSDA method is that PSDA method makes the
assumption that the signal is periodic—it oscillates the same way from t = −∞ to t = ∞
during every period. In CWT such assumption is not needed as the amplitude of the
wavelets decreases over time and reaches zero.

20

3 Related work

This chapter describes a publicly available SSVEP dataset [2] that was used to perform
offline experiments in this work and gives detailed overview of 6 articles where the same
dataset was used to evaluate performances of BCIs. In Chapter 5, the results of these arti-
cles are compared to the results of this work. This chapter also describes the performance
measures used to evaluate BCIs.

3.1 SSVEP dataset for offline experiments

The offline experiments of this work were mostly performed on the publicly available EEG
dataset by Bakardjian et al. [2]. The dataset contains EEG recordings of four subjects.
The flickering frequencies of the targets were 8 Hz, 14 Hz and 28 Hz and the visual stimuli
were displayed on a computer monitor with 170 Hz refresh rate approximately 90 cm
away from the subject’s eyes. With each subject, five trials of recording the EEG for each
flickering frequency were performed. Each trial consists of about 25 seconds of EEG data
and 15 seconds of that is with visual stimulation of the target. EEG data was recorded
using BIOSEMI EEG system with 128 channels and 256 Hz sampling rate. To make the
results comparable to Emotiv EPOC, only two of the 128 channels were used—O1 and
O2.

The advantages of using a publicly available dataset is that the obtained results can
be compared to other results published in the literature. Overview of other works that
use the same dataset and implement a classification algorithm for BCI can be seen in
Section 3.3.

3.2 Performance measures

There are multiple ways to measure the performance of a BCI. One way to evaluate a BCI
is to calculate its classification accuracy, that is the ratio of correctly classified targets to
the number of classifications made.

Accuracy, however, does not reflect how long it takes for the BCI to make the decision.
Therefore, mean detection time (MDT) is also used that shows how much time it takes
on average to classify a target. For some BCIs, the detection time is fixed while for others
it varies, allowing the BCI to keep collecting additional data, if it cannot make confident
enough prediction with the data at hand. Avoiding making uncertain classifications is
beneficial, because having a BCI make as few false positive predictions as possible is a
desirable property in a real-world application.

A performance measure that combines the accuracy P and the number of targets N is
called information transfer rate (ITR) and the formula for calculating it in units of bits

21

per classification of command is [31]

ITRc = log2N + P log2 P + (1− P) log2

(
1− P

N − 1

)
. (3.1)

ITRc shows how many bits of information is transferred through the BCI with one pre-
diction. The ITR can also be calculated in units of bits/min that is commonly used to
measure the performances of BCIs as it also takes into account the MDT

ITR = ITRc ·
60

MDT
(3.2)

and it shows the amount of information transferred in one minute. The assumptions that
should be satisfied in order to use given formulas to calculate ITR are: all predictions
are equally likely, if choosing a wrong target, all wrong targets are equally likely to be
chosen and the accuracy of successfully classifying a target has to be the same for every
target [31].

For evaluating a specific classifier, it can be useful to use performance measures like true
positive rate (TPR) or recall, positive predictivity value (PPV) or precision and false
positive rate (FPR). The formulas for calculating these measures are as follows

TPR =
TP

TP + FN
, FPR =

FP
FP + TN

, PPV =
TP

TP + FP
,

where TP denotes the number of true positives, TN true negatives, FP false positives
and FN false negatives. With the same notation, accuracy can be calculated as

ACC =
TP + TN

TP + TN + FP + FN
.

TPR, PPV and FPR can be useful when choosing a threshold value for a feature of a
binary classifier. FPR and TPR are used to plot receiver operating characteristic (ROC)
curves. In ROC curves, for each threshold value FPR and TPR of the classifier are
calculated and the result can be plotted as TPR versus FPR for visual evaluation of
the classifier. Area under the generated curve can be used as performance measure and
suitable threshold can be chosen from the curve manually or automatically. Similar to
ROC curve is the precision-recall curve that plots instead of TPR versus FPR, PPV
versus TPR.

3.3 Articles using BIOSEMI dataset for BCI evalua-
tion

This section gives an overview of all the articles that the author could find at the time of
writing this thesis that use the dataset described in Section 3.1 and report performances
of their implemented BCI. The articles are described to be able to compare them to the
results of this work.

22

3.3.1 Features extraction based on subspace methods with ap-
plication to SSVEP BCI

In the article by Velchev et al. [29], a feature extraction method based on PSD analysis
called multiple signal classification (MUSIC) is implemented. Similarly to PSDA method,
this method also estimates PSD, but instead of using the periodogram method discussed
in Section 2.1, it uses a method called MUSIC. This method uses the covariance matrix
of a signal to calculate the estimate.

Theory behind MUSIC method

This section follows the description of the MUSIC method given in the book by Stoica
and Moses [25]. MUSIC method makes the assumption, that the signal x(t) can be
represented by a series of complex exponentials αje

i(ωjt+φj), j ∈ {1, . . . , n} with additive
white noise e(t)

x(t) =
n∑

j=1

αje
i(ωjt+φj) + e(t) (3.3)

where βj is the amplitude, ωj the frequency in units of radians per sample and φj the
initial phase of the corresponding sinusoid [25].

This means that MUSIC method is parametric technique for estimating PSD unlike the
periodogram method, which is non-parametric. Therefore, if the assumptions of MUSIC
are met, it can outperform the periodogram method [25]. Likewise, if the assumptions
are not met, periodogram method is likely to outperform MUSIC method [25].

Let’s represent the equation (3.3) with matrices as

X(t) = AY (t) + E(t)

where

A =
(
a(ω1) a(ω2) . . . a(ωn)

)
a(ω) =

(
1 e−iω e−iω2 . . . e−iω(m−1)

)T (3.4)

Y (t) =

α1e

i(ω1t+φ1)

α2e
i(ω2t+φ2)

...
αne

i(ωnt+φn)

 X(t) =

x(t)

x(t− 1)
...

x(t−m+ 1)

 E(t) =

e(t)

e(t− 1)
...

e(t−m+ 1)

 .

The covariance matrix of X(t) is

R = E(X(t)X∗(t)) = APA∗ + σ2I

where

P =

α1 0 . . . 0
0 α2 . . . 0
...
0 0 . . . αn

23

By organising the eigenvectors corresponding to m−n smallest eigenvalues of the matrix
R into matrix G = (~g1, . . . , ~gm−n), it can be shown that frequency components of the
signal x(t) are ω for which [25]

a∗(ω)GG∗a(ω) = 0.

First step of the MUSIC method is estimating the covariance matrix of X(t) using the
formula

R̂ =
1

N

N∑
t=m

X(t)X∗(t). (3.5)

The next step of MUSIC method is finding the m − n eigenvalues and corresponding
eigenvectors ~̂g1, . . . , ~̂gm−n of the estimated covariance matrix R̂.

Finally, the frequencies giving n highest peaks of

1

a∗(ω)GG∗a(ω)
, ω ∈ [−π, π] (3.6)

are considered to be the frequencies of the frequency components [25].

SSVEP-based BCI feature extraction

The first step in the SSVEP-based BCI by Velchev et al. [29] is estimating the covariance
matrix R̂ for each of the used EEG channels as shown in (3.5). Then the eigenvalues and
eigenvectors of the matrix R̂ have to be calculated.

The size of the noise subspacem−nmust be preliminarily specified. Larger noise subspace
gives a smooth PSD that may miss some peak frequencies; smaller noise subspace gives
detailed PSD that may include spurious frequency peaks [29].

Then the pseudo-PSD in equation 3.6 can be estimated using formula

PSDpseudo(f) =
1∑m−n

i=1 |aT (f) · gk|2
. (3.7)

where a(t) is defined as in equation (3.4) and g1, . . . , gm−n are the m − n eigenvectors
corresponding of R̂ to m− n smallest eigenvalues λ1, . . . , λm−n.

To get an estimation for PSD, the sum in (3.7) has to be weighed by corresponding
eigenvalues [29]

PSD(f) =
1∑m−n

i=1

∣∣∣ 1λi
· aT (f) · gk

∣∣∣2 .
Then to get the features to be used in SSVEP-based BCI, the relative powers pi for the
peaks in PSD of frequencies f̂1, . . . , f̂k that are closest to the target frequencies f1, . . . , fk
have to be calculated [29]

pi =
PSD(f̂i)∑k
i=1 PSD(f)

.

24

Another feature that is used in classification is spectrum intensity ratio that is similar to
SNR from equations (2.3) and (2.4) that can be used in PSDA method

SIi =
PSD(f̂i)∑f̂i−∆f

f=f̂i−B
2

PSD(f) +
∑f̂i+

B
2

f=f̂i+∆f
PSD(f)

,

where B is the bandwidth that was set to 0.5 Hz in the article and ∆f is the chosen
frequency resolution [29].

The final feature vector to be classified with support vector machine (SVM) with Gaussian
kernel using one-vs-one strategy for classification is(

p1, . . . , pk, SI1, . . . , SIk, f̂1, . . . , f̂k

)
.

Results

In the work by Velchev et al. [29], only two of the three available classes were used. The
confusion matrix seen in Table 3.1a is obtained by k-fold cross validation. Velchev et al.
also experimented with adding a class for absence of stimulus. This approach reduced
the accuracy considerably and the confusion matrix can be seen in Table 3.1b.

They also provide a comparison on how the window size affects the accuracy which can
be seen in Table 3.2. The results in tables 3.1a and 3.1b were obtained by using window
size of 512 samples with an overlap of consecutive segments of 256 samples.

Table 3.1: Confusion matrices for the proposed method [29].

(a) Confusion matrix for two classes.

Predicted class

Tr
ue

cl
as

s 275

46%

24

4%

TPR

92%
8 Hz

29

4.8%

270

45.2%

TPR

45.2%
14 Hz

PPV

90.5%

PPV

91.8%

ACC

91.1%

(b) Confusion matrix with absence class.

Predicted class

Tr
ue

cl
as

s 321

32.4%

49

4.9%

22

2.2%

TPR

81.9%
None

97

9.8%

189

19.1%

13

1.3%

TPR

63.2%
8 Hz

35

3.5%

11

1.1%

253

25.6%

TPR

84.6%
14 Hz

PPV

70.9%

PPV

75.9%

PPV

87.8%

ACC

77.1%

3.3.2 A prototype of SSVEP-based BCI for home appliances
control

In the work by Anindya et al [1], an SSVEP-based BCI was implemented based on PSDA
method that was already discussed in Section 2.1. The PSD was estimated using peri-
odogram method. The feature used for classification was the frequency with the highest
amplitude and the results show that the feature extraction method is more accurate with
the lower frequencies 8 Hz and 14 Hz.

25

Table 3.2: Comparison of window size and accuracy [29].

Window size Accuracy

128 63.2%

256 75%

512 91.1%

1024 94.3%

As a preprocessing step, the EEG data was filtered using windowed-sinc digital filter
with Blackman window. Blackman window is also used before performing FFT. Only
electrodes O1, O2, POz and Oz were used in this work.

The classification was done using SVM and two different kernels were compared. With
linear kernel the accuracy was 65% and for radial-base function (RBF) kernel it was
71.67%. More detailed results are shown in Table 3.3.

Table 3.3: Results of the proposed method [1].

Kernel Number of trials Correct results Accuracy

Linear 60 39 65%

RBF 60 43 71.67%

3.3.3 Bio-inspired filter banks for SSVEP-based brain-computer
interfaces

In the work by Demir et al. [7], a feature extraction method called bio-inspired filter bank
(BIFB) is introduced. The method is in essence very similar to PSDA method. Only Oz
electrode as used in this work.

In BIFB method, PSD of the EEG signal is estimated using periodogram method and
triangular filters are used on the result to make the powers of different frequencies more
comparable. This is useful, because higher frequency stimulation produces smaller VEP
responses [17].

The triangular filter for target k that has flickering frequency of fk Hz is defined as

Hk(f) =

f−

(
fk−

Bk
2

)
B

· gk,
(
fk − Bk

2

)
≤ f ≤ fk(

fk+
Bk
2

)
−f

B
· gk, fk ≤ f ≤

(
fk +

Bk

2

)
0, otherwise

where Bk is the bandwidth and gk the gain of corresponding target k [7]. The filter is
shown in Figure 3.1. The peak of the triangle is at the corresponding target frequency,
bandwidth determines the length of the base of the triangle and gain determines the
height of the triangle. As can be seen in the Figure 3.1, filters can also be designed for

26

the harmonics of the target frequencies. In the figure, the red triangular filter corresponds
to the second harmonic of the 8 Hz target.

Figure 3.1: Sample triangular filters for 8 Hz, 14 Hz and 28 Hz targets [7].

The filters are multiplied with the periodogram of the EEG signal to obtain the feature
ck for each target k as follows

ck =
∑
f

Hk(f) · PSD(f) +
∑
f

H2k(f) · PSD(f) · wk

where wk is the harmonic weight—this allows to change how large impact the harmonic
frequency has on the feature value [7]. This method requires optimisation of bandwidth,
gain and harmonic weight for each subject.

Demir et al. [7] also reported the performances of PSDA and CCA method for comparison.
In the PSDA method, a bandpass filter was applied to the EEG signal, and Hamming
window was applied before performing PSDA. Finally peak finding algorithm was used on
the obtained periodogram. The detection is classified as successful if the target frequency
or its second harmonic is detected as peak frequency. The results can be seen in Table 3.4.

Table 3.4: Results of the proposed method compared to PSDA and CCA [7].

Subject
Number

of trials

PSDA CCA BIFB

MDT

(sec)

ACC

(%)

ITR

(bits/min)

MDT

(sec)

ACC

(%)

ITR

(bits/min)

MDT

(sec)

ACC

(%)

ITR

(bits/min)

1 15 10 66.7 2.00 4 73.3 7.2 7.5 100 12.7

2 15 9 66.7 2.22 4 60 3.2 7.8 100 12.2

3 15 15 60 0.9 5 66.7 4 10 86.7 5.3

4 15 15 6.7 - 3 66.7 6.67 8.33 66.7 2.4

27

3.3.4 Implementation of bilinear separation algorithm as a clas-
sification method for SSVEP-based brain-computer inter-
face

In the work by Jukiewicz and Cysewska-Sobusiak [15] PSDA method was used for fea-
ture extraction and two classification methods were compared—bilinear separation and
SVM. SVM was used with linear kernel as this produced better results than quadratic,
polynomial or Gaussian RBF kernel.

They only used electrodes O1, O2 and Oz of the 128 available electrodes and of the three
classes only two as in [29], which is described in Section 3.3.1. The features were the
amplitudes of the 8 Hz and 14 Hz frequency components normalised between 0 and 1 of
the EEG signal.

Jukiewicz and Cysewska-Sobusiak [15] used bilinear separation to classify the two classes
using the two extracted features. For each sample, two features are extracted and thus the
samples can be presented in two-dimensional space. The bilinear separation algorithm
finds a value tk for each feature k that best separates the data to the two classes. An
example of classification thresholds and samples are depicted in Figure 3.2.

Figure 3.2: Classification using bilinear separation [15].

The classification is done for a sample point (x1, x2) according to criterion

class =

{
14Hz, if(t1 < x1) ∧ (x2 < t2)

8Hz, if(x1 < t1) ∧ (t2 < x2)
. (3.8)

The samples that do not satisfy neither of the conditions presented in (3.8) were not
classified and therefore the algorithm is able to reject data that it is uncertain about.

The results of the work by Jukiewicz and Cysewska-Sobusiak [15] are shown in figures 3.3,
3.4 and 3.5. The best results are for subject 1 with 93% average accuracy of five-fold
cross validation and 33.1 bits/min ITR for the two classes using bilinear separation. Best
results for SVM were 90% of average accuracy and 32.8 bit/min ITR.

28

Figure 3.3: Accuracy of the proposed method (continuous line) compared to SVM clas-
sification (dashed line) [15].

Figure 3.4: Accuracy of the proposed method compared to SVM classification [15].

3.3.5 Frequency detection in medium and high frequency SSVEP
based brain computer interface systems by scaling of sine-
curve fit amplitudes

In the work by Karnati [17] et al. blind source separation (BSS) algorithm called algo-
rithm for multiple unknown signals extraction (AMUSE) is used for preprocessing the
signal. During the preprocessing, artefacts caused by eye blinks and muscle activity is
removed. Then sine curves are fit to the signal by non-linear least square method. This
way the amplitudes for the target frequencies are obtained which are first used to select 8
channels of the available 128 channels. These amplitudes are also calculated online to use
these in the classification process. Only two of the available four subject’s data was used

29

Figure 3.5: ITR of the proposed method compared to SVM classification [15].

and the window length was 0.5 seconds. Machine learning was not used for classification
in this work.

Theory behind AMUSE algorithm

This section follows the AMUSE algorithm description given by Tong et al. [27]. In BSS
it is assumed that the recorded signal ~x(t) ∈ Rn can be represented as a sum of source
signals ~s(t) ∈ Rm scaled with parameters A ∈ Rn×m and noise ~n(t) ∈ Rm

~x(t) = A~s(t) + ~n(t), t ∈ {1, 2, . . . , N}.

The AMUSE algorithm estimates the sources ~s(t) and the matrix A with the following
steps [27]. First the covariance matrix of the input data is estimated

Rx = E
(
x(t)xT (t)

)
and then its SVD is calculated

Rx = UxDxV
T
x .

Since Rx is symmetric, then Ux = Vx.

Next the number of sources m can be estimated and an orthogonalisation transformation
for the matrix A is calculated [27]

T =

(D11 − σ2)−

1
2 0 . . . 0

0 (D22 − σ2)−
1
2 . . . 0

...
0 0 . . . (Dmm − σ2)−

1
2

UT
x .

Orthogonalisation of the parameter matrix is performed to reduce the complexity of the
BSS problem.

30

Next, the orthogonalisation is performed
~y(t) = T~x(t) = TA~s(t) + T~n(t)

and time-shifted covariance matrix of ~y(t) is calculated for a τ
Ry(τ) = E (~y(t)~y(t− τ))

The time-shifted covariance matrix can be symmetrised and by using SVD the matrix Uy

can be obtained
Ry(τ) +Ry(τ)

2
= UyDyU

T
y . (3.9)

From equation (3.9) it can be shown that the matrix A can be estimated as
Â = T−1Uy

where T−1 can be the pseudo-inverse [27]. Therefore the sources ~s(t) can be estimated as

TÂ~̂s(t) = ~y(t)− T~n(t)

~̂s(t) = UT
y ~y(t)− UT

y T~n(t)

and in SSVEP-based BCI the low frequency components corresponding to eye blinks and
high frequency components corresponding to muscle activity can be removed from the
signal [17].

SSVEP-based BCI feature extraction

Before feature extraction Karnati et al. [17] choose 8 channels according to the amplitudes
of fit sine curves. The channels are chosen based on the sum of the amplitudes of 14 Hz
and 28 Hz fit sine waves. Four channels with highest 14 Hz amplitude and four channels
with highest 28 Hz amplitude are chosen as the channels to be used, as they considered
8 Hz target easier to classify. This channel selection is done using data from all trials.

The feature extraction is done in the following steps. First, let Sf,s denote the amplitude
of fit sine wave where f is the frequency of the sine wave, s the stimulating frequency.
Features used in the classification are [17]

Ff = Sf,f + Ef

where Ef is error term calculated as
Ef = −(zsf · σ)

where zsf is z-score of the summed sine wave amplitudes Sumf for corresponding target
f

Sumf =
∑

s∈{8,14,28}

Sf,s

and σ is the standard deviation of the amplitudes of fit sine waves with target frequencies.
Z-score of a sample Sumf is calculated as the distance between the value and the mean
in terms of standard deviation

zsf =
Sumf − µ̂

σ̂
.

Finally, the target that has the highest feature value Ff is predicted to be the chosen
target.

31

Results

The results of classifying the targets are reported separately for each target. As already
mentioned, the window length was 0.5 seconds and the data of two subjects was used.
The accuracy of detecting 8 Hz target was 86%, for 14 Hz 83% and for 28 Hz 92%.

3.3.6 Principal component analysis-based spectral recognition
for SSVEP-based brain-computer interfaces

In the work by Yehia et al. [32], the PSDA method is improved using principal component
analysis (PCA) and linear discriminant analysis (LDA) is used for classification. The
proposed method is compared to CCA and its improvements: multi-set CCA and multi-
way CCA. Different filters were used as a preprocessing step [32]. In this method also
subject-specific thresholds are calculated that are used in the classification process. This
makes the method adaptable to per-subject variabilities.

As a preprocessing step, the EEG signal is filtered with bandpass filter and then processed
with common average reference (CAR) filter to remove common noise artefacts. Finally
moving average filter (MAF) is applied to the signal.

SSVEP-based BCI feature extraction

The feature extraction method proposed by Yehia et al. [32] estimates periodogram to
find the powers of target frequencies. The target frequency that has the highest power is
considered to be the detected frequency.

For a detected frequency f , confidence is calculated as

confi(f) =
Pi(f)− Pi(fn)

Pi(f)
(3.10)

where i denotes the channel, Pi denotes the periodogram for the signal of i-th channel
and fn denotes the target frequency that had the lowest power among all the target
frequencies.

Eight channels of the available 128 were used in this work—P7, P3, Pz, P4, P8, O1,
Oz and O2. But for each subject, only these channels i were used that had weight wi

above subject-specific threshold wth that was determined using grid search. The weight
wi was determined on training set. Every time that the detected frequency f matched
the expected frequency, the weight wi was increased by the confidence confi(f) calculated
using (3.10).

Finally PCA is applied to the periodogram of each channel. During training, the num-
ber of principal components m to be used was decided by comparing the classification
accuracy and choosing m for which the accuracy was highest. This is also subject-specific.

Results

The results of the proposed method are compared to multi-set CCA and multi-way CCA.
Multi-set CCA uses subject-specific reference signals that are obtained through training

32

instead of the set of signals presented in equation (2.5). Multi-set CCA maximises the
correlation between SSVEP signals across the training trials during training phase. Multi-
way CCA also calculates subject specific reference signals, but does so by maximising
correlation between SSVEP signals and the reference signals (2.5) during training phase.
The comparison of the results can be seen in Table 3.5.

Table 3.5: Performance of the proposed method compared to variations of CCA
method [32]

Subject
Accuracy (%)

PCA-SR Multi-way CCA Multi-set CCA CCA

1 92.43 80.50 69.98 62.69

2 87.39 71.16 58.35 59.52

3 94.56 76.76 79.80 65.51

4 76.61 60.53 47.17 56.04

3.3.7 Conclusion

In two of the articles [29, 15] only two of the three classes were used, the rest of the
articles [1, 7, 17, 32] used all three available classes to measure the performance of their
implemented method. The articles which used two classes achieved similar performances
with 1 second window length, the accuracy for both of these were around 75%. In the
article by Velchev et al. [29], it was demonstrated, however, that increasing the time
window increases the accuracy to over 90%.

Of the articles where three classes were used, the article by Yehia et al. [32] and the article
by Demir et al. [7] are more detailed than the other two and achieve superior performance.
Demir et al. [7] even achieve 100% accuracy for two of the subjects, but this comes at the
cost of having long MDT. Yehia et al. [32] unfortunately do not report results separately
for different window lengths, but only average performance over different window lengths
or average over different datasets. The detailed results can be seen in Table 3.6.

This concludes the overview of the related work where the dataset [2] was used to evaluate
BCI classification algorithms. Now, by having overview of the state of the art result, in
the next chapter a method of classifying the targets of a BCI is proposed and in Chapter 5
the results of the proposed method are compared to results of the related work.

33

Table 3.6: Results of the related articles.

Article Section Feature
extraction

Classification Preprocessing Classes
Window
length/
MDT (s)

Subjects Channels Accuracy
(%)

[29] 3.3.1 MUSIC

SVM,
Gaussian
kernel,
one-vs-one

N/A 8 Hz,
14 Hz

0.5

All N/A

63.2
1 75
2 91.1
4 94.3

[1] 3.3.2 PSDA
SVM linear Windowed

sinc filter,
Blackman
window

8 Hz,
14 Hz,
28 Hz

N/A All
O1, O2,
POz, Oz

65

SVM RBF 71.67

[7] 3.3.3

BIFB
No machine
learning
(but requires
finding
subject
specific
parameters)

Bandpass
filter,
Hamming
window

8 Hz,
14 Hz,
28 Hz

7.5 1

Oz

100
7.8 2 100
10 3 86.7
8.33 4 66.7

PSDA

10 1 66.7
9 2 66.7
15 3 60
15 4 6.7

CCA N/A

4 1 73.3
4 2 60
5 3 66.7
3 4 66.7

[15] 3.3.4 PSDA

Bilinear
separation N/A 8 Hz,

14 Hz

1 1
O1, O2,
Oz

93
1 All ∼74

SVM 1 1 90
1 All ∼71

[17] 3.3.5
Least
square
sine fitting

No machine
learning

AMUSE
8 Hz

0.5 Two
subjects

8 subject
specific
channels

86
14 Hz 83
28 Hz 92

[32] 3.3.6

PSDA
+ PCA

LDA (and
grid search
for subject
specific
parameters)

Bandbass
filter, CAR,
MAF

8 Hz,
14 Hz,
28 Hz

Average
over time
windows
up to 4 s

1

Subject
specific
from the
selection:
P7, P3,
Pz, P4,
P8, O1,
Oz, O2

92.43
2 87.39
3 94.56
4 76.61

Multi-
way
CCA

1 80.50
2 71.16
3 76.76
4 60.53

Multi-
set
CCA

1 69.98
2 58.35
3 79.80
4 47.17

CCA

1 62.69
2 59.52
3 65.51
4 56.04

34

4 Proposed classification method

In this chapter, a method of classifying targets of a BCI with thresholds and a method
for finding these thresholds is proposed. Finding the thresholds will be formalised as
maximisation task, where the value to be maximised is a performance measure for the
BCI. Therefore, first the performance measure is derived, a method of calculating it is
proposed and finally the gradient of the performance measure is calculated. By using the
gradient, thresholds that maximise the performance measure can be found.

4.1 Classifying with cut-off thresholds

In this section, the proposed method of classifying targets of a BCI from features using
cut-off thresholds is described. The features can be extracted by one of the methods
described in Section 2. For all the described feature extraction methods, a higher feature
value for a target means that the corresponding target is more likely to be the user’s
choice. Therefore, using a threshold that indicates how large a feature value has to be in
order to predict that target is a reasonable approach.

The proposed rule for classifying with thresholds is defined as follows. Assuming that
there are n targets in a BCI, let us denote a class corresponding to a target as k ∈ [n] =
{1, 2, . . . , n}, a cut-off threshold for a class k as tk and feature extracted by a feature
extraction method for the class k as fk. Cut-off threshold is a value tk such that if a
sample has feature fk for which fk ≥ tk and for all the other classes k′ ∈ [n] \ k it holds
that fk′ < tk′ then the sample is classified as class k.

It can be seen that classifying by the described rule can lead to a situation where a sample
does not belong to any of the classes. The samples that have all the class features fk
smaller than corresponding thresholds tk will not be classified and the samples that have
multiple feature values over the thresholds will not be classified. In simple words, if the
BCI is uncertain about a sample, it will not make a prediction. Having a possibility to
not make classification for a sample is good for filtering out false classifications which
in case of a BCI are much more costly than not making a prediction. This is so under
the assumption that having the BCI do nothing is more beneficial than executing wrong
commands.

Not making a prediction will be depicted on confusion matrices with additional “nothing”
class. In case of three classes (n = 3), the confusion matrix could look as shown in
Table 4.1a. It can be seen from the last column of the confusion matrix that for 306
samples that were actually from class 1 classification was not made. For class 2 and 3,
289 and 554 samples were not classified respectively. The last row will always consists of
only zeroes as there are no samples for which “nothing” is the correct class.

In the calculation of accuracy for the confusion matrices, the last row and column will
be discarded, therefore using only the part of the matrix that is coloured green. This
captures the idea that not making a prediction is better than making a wrong prediction.
The last column is thus provided just to give an overview of how many samples were not

35

Table 4.1: Confusion matrix examples.

(a) Confusion matrix with many predictions.

Predicted class

259 0 0 306 1

3 270 3 289 2

1 0 10 554 3

Tr
ue

cl
as

s

0 0 0 0 Nothing

(b) Confusion matrix with few predictions.

Predicted class

1 0 0 564 1

0 3 0 562 2

0 0 0 565 3

Tr
ue

cl
as

s

0 0 0 0 Nothing

classified. The accuracy for matrix 4.1a is therefore

ACC =
Trace of matrix

Sum of elements exluding last column
=

259 + 270 + 10

259 + 270 + 10 + 3 + 3 + 1
≈ 0.987

while for matrix 4.1b is is

ACC =
1 + 3

1 + 3
= 1.

As can be seen, it might not always be the best idea to choose classifier with best accuracy,
as with the added “nothing” class the classifier can make only very few predictions, thus
the user has to wait very long before getting a response from the BCI. Thus, there is a
trade-off between accuracy and the number of predictions made. Fortunately, in the BCI
context, this problem has been already addressed by introducing ITR as performance
measure and it also works in the case of added “nothing” class.

Recall from Section 3.2 that ITR depends on the accuracy and MDT of the classifier.
One way to calculate the MDT in units of second per command for offline experiments is

MDToffline =
Length of input data (s)

Number of predictions made
(4.1)

which for matrices 4.1a and 4.1b would give

MDToffline =
225

259 + 270 + 10 + 3 + 3 + 1
≈ 0.41

and

MDToffline =
225

1 + 3
= 56.25

respectively, assuming the length of the input EEG data was 225 seconds in both cases.
Therefore, for matrix 4.1b the classifications were made with 100% accuracy but on
average the classifications took 56.25 seconds to make, while for matrix 4.1a the accuracy
was also very high, but classification only took on average approximately 0.41 seconds.

Note that MDT of 0.41 seconds is quite unrealistic for online BCI as it takes time for the
user to shift gaze between targets, it takes time to elicit SSVEP in brain and to obtain
enough EEG data for feature extraction methods to extract reliable features.

36

The reason why so low MDT is achievable in offline case, is that it is desirable in offline
case to have as many samples as possible to obtain reliable results and therefore all the
data that should contain SSVEP data is used in the analysis. For example, when using
a BCI online, it is reasonable to discard all the previous EEG data after a classification
is made as the previous data does not contain information about which target the user
wishes to choose next. In offline case it is known what is the expected target and if after
a classification the expected target stays the same, discarding the data is not required.
Not discarding the data gives more data for analysis.

Therefore, to not discard data from analysis and to obtain better online ITR estimate, a
different method for calculating MDT is needed. The method for estimating MDT that
would be obtainable in online case when using the same classifier that was trained offline
is derived in the Section 4.2.

4.2 Online ITR estimation

Estimating online MDT and online ITR is required in the proposed method of thresholds
optimisation described in the following sections. The threshold optimisation will be
formalised as a maximisation task of the online ITR estimate. Since the actual online
ITR is different for different thresholds, the online ITR cannot just be measured online,
but it has to be estimated in the threshold optimisation process using the information
obtained in offline analysis.

First, let us introduce the required notation. Let s denote the time step length between
consecutive feature extractions and let w denote the window length which shows how
much EEG data is used by feature extraction method at each time step, both in units of
seconds. Therefore, when starting an online BCI, first w seconds of EEG data is obtained
and then the first feature extraction method will be made. Then, additional s seconds
of data will be recorded and again the last w seconds of recorded data will be used in
feature extraction. Thus the overlap of consecutive windows is w − s seconds.

Following the example given before, in the online case after a classification is made the
last w seconds of data should be discarded and not used in the next feature extraction
as this data mostly contains the information about which command the user wanted
to choose previously and not the information about which command the user wishes to
choose next. In offline testing, the w seconds of data have to be discarded not after every
classification, but every time after the expected target changes.

Therefore, to estimate online MDT, it is needed to know how often the classifier makes a
prediction, that is, does not predict “nothing” class. This is needed because the assump-
tion was made that with every prediction w − s seconds of data is discarded in online
case that is not discarded in offline case.

Making a prediction at a time step can be modelled as Bernoulli random variable X ∼
B(p) as it has two possible outcomes—with probability p the prediction is made and with
probability 1− p the prediction is not made. The probability p can be estimated as the
proportion of predictions made to all samples

p =
Number of samples not classified as “nothing” class

Number of samples
. (4.2)

37

Therefore, assuming that the probability of making a prediction is the same at each time
step and that at least w−s seconds of data is already collected, the number of time steps
needed to take before making a prediction can be modelled as geometric random variable
Y ∼ G(p) as it is the number of prediction trials needed to get one successful prediction.
Therefore, the expected number of time steps needed before a prediction is made, that is
the expected value of Y ∼ G(p), is

E(Y) =
1

p
.

Now, by making the assumption that the probability of making a prediction at a time
step will be the same for online case as it was for offline, the online MDT can be estimated
as

M̂DT = w − s+
1

p
· s = w +

(
1

p
− 1

)
· s. (4.3)

For example, if p = 1, then at every time step a prediction is expected to be made and
MDT is the lowest M̂DT = w. If p = 1

2
then prediction is expected to be made after

every two time steps and M̂DT = w + s etc.

A relationship between the MDToffline calculated as equation (4.1) and M̂DT is that
they are equal if the same amount of data segments of length w− s are discarded in both
of them or in other words, the number of expected target changes is equal to the number
of prediction predictions made.

Finally, to estimate the online ITR of the classifier from the results obtained offline, an
additional assumption has to be made that the accuracy will be the same in online case
as it was offline. If the given assumptions are satisfied, ITR can be estimated as

ÎTR = ITRc ·
60

M̂DT

where ITRc is calculated as in (3.1) and M̂DT as in (4.3).

Therefore, in this section a method for estimating online performance of a BCI based
on offline performance has been proposed to evaluate the classifiers of BCIs and to find
optimal thresholds for classification. These ideas are used in the following sections to
describe the proposed algorithm for finding the optimal thresholds.

4.3 ITR for unbalanced classes, predictions and ac-
curacies

As discussed in section 3.2, commonly used performance measure for a BCI is ITR pre-
sented in formula (3.1). But the ITR as presented in (3.1) makes many assumptions
about the obtained results. In particular, the classification accuracy has to be the same
for each target, all the predictions have to be equally likely and, in the case of making a
wrong prediction, all the wrong targets have to be equally likely to be chosen [31]. An
example of a confusion matrix that satisfies all these assumptions is given in table 4.2a.

38

Table 4.2: Confusion matrix examples.

(a) Balanced matrix.

Predicted
Tr

ue
cl

as
s 20 4 4

4 20 4

4 4 20

(b) Predicted to 2 classes.

Predicted

Tr
ue

cl
as

s 51 0 0 49

0 48 0 52

0 0 1 99

0 0 0 0

(c) Predicted to 3 classes.

Predicted

Tr
ue

cl
as

s 21 0 1 78

0 22 2 76

0 0 10 90

0 0 0 0

As can be seen, a confusion matrix satisfying all the assumptions for formula (3.1) looks
artificial. In real applications, the classifier is likely to be able to classify certain classes
better than others and is more likely to make false classifications to certain classes.
Furthermore, when using added “nothing” class as described in section 4.1, it is possible
for the confusion matrix to become even more unbalanced.

Consider the example confusion matrices given in tables 4.2b and 4.2c where the “nothing”
class is added. In these cases, even if there is equal amount of samples from each class,
for some thresholds it might happen that there are no samples classified as one of the
classes. This raises the question of how to evaluate the result and which confusion matrix
is better.

In more detail, results from matrix 4.2b show that the classifier was practically not able
to classify samples as class 3. Using formula (3.1) would give an ITRs of 1.58 and 1.23
bits per prediction for matrices 4.2b and 4.2c respectively. But the actual amount of
transferred information is different, because the formula assumes that there are three
classes and each of the classes is equally well classified. For matrix 4.2b, however, the
classifier practically ignores to class 3. Therefore it would be more fair, if in the calculation
of ITR for matrix 4.2b the number of classes was considered 2 instead of 3. In this case
the ITR would be 1 bit per prediction instead of 1.58 which shows that actually matrix
4.2c is better than 4.2b.

Next, an ITR calculating method is derived that does not make any of the assumptions
that the formula (3.1) makes and thus gives more accurate ITR when the prediction
probabilities, accuracies or classes are unbalanced. Being able to calculate accurate ITR
is essential in the threshold optimisation process as it will be formalised as ITR maximi-
sation task.

Let P and C denote the random variables that model the predicted class and correct class
respectively. Let Pi and Cj denote the events that P = i and C = j for classes i and j
respectively. ITR can be calculated as the mutual information of these random variables.
Mutual information shows how much information is obtained about one random variable
through the other. In the case of a BCI, it shows how much information the predicted
class gives about the correct class.

In case of n classes [n] = {1, 2, . . . , n}, the mutual information I(P,C) between P and C

39

can be calculated as

I(P,C) =
n∑

i=1

n∑
j=1

P
(
Pi ∩ Cj

)
log2

(
P(Pi ∩ Cj)

P(Pi) · P(Cj)

)
.

If the previously discussed assumptions are true, meaning that

P(Pi) = P(Pj), i, j ∈ [n]

P(Ci | Pi) = P(Cj | Pj), i, j ∈ [n]

P(Ci | Pk) = P(Cj | Pk), i, j ∈ [n], and k ∈ [n] \ {i, j}

which gives P(Pi) =
1
n

and by denoting P(Ci | Pi) = p

P(Ci | Pj) =
1− p

n− 1
i, j ∈ [n], i 6= j,

then

I(P,C) =
n∑

i=1

n∑
j=1

P
(
Ci | Pj

)
P(Pj) log2

(
P
(
Ci | Pj

)
P(Pj)

P(Ci) · P(Pj)

)

= np · 1
n

log2 (np) + n(n− 1) · 1− p

n− 1
· 1
n

log2

(
1− p

n− 1
· n
)

= p log2 p+ p log2 n+ (1− p) log2

(
1− p

n− 1

)
+ log2 n− p log2 n

= log2 n+ p log2 p+ (1− p) log2

(
1− p

n− 1

)
which is the formula in (3.1). Therefore the traditional ITR (3.1) is a special case of the
mutual information of P and C and thus the mutual information can be used to calculate
the amount of information transferred in one minute

ITRMI = I(P,C) · 60

MDT
(4.4)

similarly as for the traditional ITR.

Mutual information between the predicted class P and correct class C is more powerful
as a performance measure than the traditional ITR (3.1) as it can be used in the case
when classes are unbalanced or prediction accuracies are very different. Having a good
performance measure is essential in the proposed threshold finding method, as it will be
formalised as maximisation of the performance measure.

4.4 Calculating mutual information for different thresh-
olds

To formalise the threshold finding as a maximisation task, first assumptions on the dis-
tribution of the features are made to be able to calculate the performance measure for
different threshold values ti.

40

Let Fi denote a random variable which models the feature value for target i ∈ [n] =
{1, 2, . . . , n} where, as before, n is the number of targets. Fi is a continuous random
variable. Let C denote a random variable that models the correct class, thus taking
values from [n]. And finally, let P denote a random variable that denotes the predicted
class.

It was observed empirically, that features extracted by the described feature extraction
methods can be modelled well by skew normal distribution. Skew normal distribution
was fit to the features given a class histograms depicted in Figure 4.1. The histograms
of features given a class are shown for subject 1 from dataset [2] and features were
extracted with CCA method with three harmonics. Recall that the features extracted by
CCA method are the canonical correlation between EEG signal and the corresponding
set of reference signals for each target at each time step. Thus, in this case Fi | Cj models
the canonical correlation between EEG signal and the reference signals of class i while
the correct class is j. As can be seen, the fit skew normal probability density functions
(PDFs) closely resemble the histograms. The parameters for skew normal distribution
were found using least squares method for curve fitting.

The advantage of using the estimated PDFs in formalising the maximisation task is
that the PDFs are continuous, unlike the histograms, and their definite integrals can
be calculated using the corresponding cumulative distribution functions (CDFs). The
relationship between a PDF fX(x) and a CDF FX(x) of a continuous random variable X
is

FX(x) =

∫ x

−∞
fX(t)dt.

Therefore, the value of a CDF FX(x) at x is equal to the probability that X ≤ x

FX(x) = P(X ≤ x) = P(X < x).

This means that for a random variable Fi, which models the feature value for class i, its
CDF at ti gives the probability that the feature value is smaller than the given threshold
ti. Similarly, the probability that feature value is larger than threshold ti is equal to the
complementary CDF at ti

F̄Fi
(ti) = 1− P(Fi > ti) = 1− P(Fi ≥ ti).

since the event Fi ≥ ti is complementary to the event of the feature being smaller than
ti. The complementary CDFs of the corresponding PDFs from Figure 4.1 can be seen in
Figure 4.2.

Therefore, according to classification rule presented in 4.1, the probability of a sample
being classified as class i is

P(Pi) = P

Fi ≥ ti ∩

 ⋂
j∈[n]\{i}

Fj < tj

 . (4.5)

Being able to calculate this probability is essential in the proposed classification method.

To use the previously fit skew normal distribution CDFs in the calculation of (4.5), the
event Pi has to be conditioned on a class Ck, as the fit skew normal distributions were

41

0 0.5 1
0

2

4

6

8

C
=
1

fF1|C

0 0.5 1
0

2

4

6

8

fF2|C

0 0.5 1
0

2

4

6

8

fF3|C

0 0.5 1
0

2

4

6

8

C
=
2

0 0.5 1
0

2

4

6

8

0 0.5 1
0

2

4

6

8

0 0.5 1
0

2

4

6

8

C
=
3

0 0.5 1
0

2

4

6

8

0 0.5 1
0

2

4

6

8

Figure 4.1: Histograms of features given class (blue). Green line denotes skew normal
distribution fit to the data and red lines indicate possible cut-off thresholds.

0 0.5 1
0.0
0.2
0.4
0.6
0.8
1.0

C
=
1

F̄F1|C

0 0.5 1
0.0
0.2
0.4
0.6
0.8
1.0

F̄F2|C

0 0.5 1
0.0
0.2
0.4
0.6
0.8
1.0

F̄F3|C

0 0.5 1
0.0
0.2
0.4
0.6
0.8
1.0

C
=
2

0 0.5 1
0.0
0.2
0.4
0.6
0.8
1.0

0 0.5 1
0.0
0.2
0.4
0.6
0.8
1.0

0 0.5 1
0.0
0.2
0.4
0.6
0.8
1.0

C
=
3

0 0.5 1
0.0
0.2
0.4
0.6
0.8
1.0

0 0.5 1
0.0
0.2
0.4
0.6
0.8
1.0

Figure 4.2: Complementary CDFs of the corresponding PDFs in Figure 4.1.

42

fit to Pi | Ck. However, to use the CDFs for calculating the probability, the features,
conditioned on Ck, have to be mutually independent. This means that for the CDFs
FF1|Ck

, . . . , FFn|Ck
of random variables F1 | Ck, . . . , Fn | Ck the following holds

n∏
i=1

FFi|Ck
(fi) = FF1,...,Fn|Ck

(f1, . . . , fn)

where FF1,...,Fn|Ck
is the joint CDF.

Whether the conditional independence of features is a reasonable assumptions can be
inspected from Figure 4.3. In this figure, only the data for class 1 of subject 1 was used
and features were extracted using CCA with three harmonics. Only dependence that
can be seen from the figure is between feature 2 and feature 3, which occurs probably
due to the overlap of two reference signals for 14 Hz and 28 Hz frequency targets as three
harmonics were used in CCA. Otherwise no clear dependence between features can be
seen from the figure, which of course does not verify that the features are conditionally
independent, put provides evidence that the assumption is reasonable. Another thing
to note is that the figures only provide pairwise scatterplots, while the assumption was
made that the features are mutually independent. Scatterplots for all three classes can
be seen in Figure 4.4.

Therefore, the probability of predicting class i when the correct class is k under the
assumption that features conditioned on a class are mutually independent is

P(Pi | Ck) = P

Fi ≥ ti ∩

 ⋂
j∈[n]\{i}

Fj < tj

∣∣∣Ck

= P

 ⋂
j∈[n]\{i}

Fj < tj

∣∣∣Ck

− P

⋂
j∈[n]

Fj < tj

∣∣∣Ck

=

∏
j∈[n]\{i}

P(Fj < tj | Ck)−
∏
j∈[n]

P(Fj < tj | Ck)

= (1− P(Fi < ti | Ck)) ·
∏

j∈[n]\{i}

P(Fj < tj | Ck)

= P(Fi ≥ ti | Ck) ·
∏

j∈[n]\{i}

P(Fj < tj | Ck)

= F̄Fi|Ck
(ti)

∏
j∈[n]\{i}

FFj |Ck
(tj)

(4.6)

which means that the probability under consideration can be calculated using the CDFs
and a complementary CDF of the previously fit skew normal distributions.

Now, since the events Ck partition the sample space, the probability for predicting a
class (4.5) can be calculated using the formula of total probability

P(Pi) =
n∑

j=1

P(Pi | Cj)P(Cj)

where P(Cj) is simply the proportion of samples from class j to all samples and P(Pi | Cj)
can be calculated as in 4.6.

43

0 0.5 1
0
20
40
60
80
100

fF1|C1

0 0.5 1
0

0.25

0.50

1.75

1

fF2|C1

0 0.5 1
0

0.25

0.50

1.75

1

fF3|C1

0 0.5 1
0

0.25

0.50

1.75

1

0 0.5 1
0
20
40
60
80
100

0 0.5 1
0

0.25

0.50

1.75

1

0 0.5 1
0

0.25

0.50

1.75

1

0 0.5 1
0

0.25

0.50

1.75

1

0 0.5 1
0
20
40
60
80
100

Figure 4.3: Histograms of features and pairwise scatterplots of features, both of samples
from class 1. Coloured lines denote possible cut-off thresholds for features.

0 0.5 1
0
20
40
60
80
100

fF1

0 0.5 1
0

0.25

0.50

1.75

1

0 0.5 1
0

0.25

0.50

1.75

1

0 0.5 1
0

0.25

0.50

1.75

1

0 0.5 1
0
20
40
60
80
100

fF2

0 0.5 1
0

0.25

0.50

1.75

1

0 0.5 1
0

0.25

0.50

1.75

1

0 0.5 1
0

0.25

0.50

1.75

1

0 0.5 1
0
20
40
60
80
100

fF3

Figure 4.4: Histograms of features and pairwise scatterplots of features for samples from
class 1 (blue), class 2 (green) and class 3 (red).

44

Therefore, under the independence assumption all the probabilities required for calculat-
ing the mutual information between P and C can be calculated using the CDFs. But
since the presented classification rule can sometimes not make a prediction, that is predict
a sample as “nothing” class, the calculation of these probabilities should take this into
account. This is similar to the calculation of accuracy presented in Section 4.1 that only
uses part of the confusion matrix to calculate the accuracy. This approach is reasonable,
because it allows the classifier to not make a prediction when it is not confident enough,
while not making enough predictions is penalised by the MDT.

Therefore, let M denote the event that prediction was made, that is “nothing” class was
not predicted. The probability of M can be calculated as

P(M) = P
(

n⋃
i=1

Pi

)
=

n∑
i=1

P(P = i)

because the events Pi are mutually exclusive, meaning that none of the samples are
predicted as multiple classes. Note that P(M) is equal to p from (4.2). Now by using the
probability of M , the conditional probability of predicting a class i and the conditional
probability of a class j conditioned on M can be calculated as

P(Pi |M) =
P(Pi ∩M)

P(M)
=

P(Pi)

P(M)

and

P(Cj |M) =
P (Cj ∩ (

⋃n
i=1 Pi))

P(M)

=
P (
⋃n

i=1 (Cj ∩ Pi))

P(M)

=
1

P(M)

n∑
i=1

P(Cj ∩ Pi)

=
1

P(M)

n∑
i=1

P(Pi | Cj)P(Cj)

where again the disjointness of events Pi for i ∈ [n] was used. As can be seen, the
probabilities of Pi |M and Cj |M can also be calculated using the CDFs.

Finally, the probability of predicting i given that class is j conditioned on M , or symbol-
ically P(Pi | Cj,M), has to be calculated. For this the following probability is needed

P(M | Cj) =
n∑

i=1

P(P = i |M).

Thus the last probability needed to calculate mutual information in case of added “noth-
ing” class is

P(Pi | Cj,M) =
P(Pi ∩ Cj ∩M)

P(Cj ∩M)
=

P(Pi ∩M | Cj)P(Cj)

P(Cj ∩M)
=

P(Pi | Cj)

P(M | Cj)

Therefore, by making the assumptions that features are mutually independent given a
class and features given a class have a certain distribution for which PDF can be fit to the

45

data and its CDF can be calculated, then the mutual information between the predicted
classes Pi | M and correct classes Cj | M can be calculated using just the CDFs fit to
data and the proportions of classes. To make the maximisation of the ITR based on
mutual information easier, in the next section the gradient of the mutual information is
calculated.

4.5 The rate of change of ITR

In Section 4.3 a method for calculating the ITR based on mutual information ITRMI

from thresholds was introduced 4.4 and in the previous section it was shown that it
can be calculated using just the CDFs of the distributions of features given class and
proportions of different classes. In this section it is shown that the gradient of ITRMI

can be calculated using in addition to CDFs and class proportions, the corresponding
PDFs. The gradient will be used in finding the optimal thresholds for classification.

There are some optimising algorithms that can be used to find local maxima of a func-
tion which take only the function itself as an input, but other algorithms also use the
information about the rate of change of the function—its gradient. Some algorithms even
take the Hessian as input, which is a matrix consisting of second order derivatives of the
objective function. In this work, a method based on gradient descent algorithm is used
for optimisation, which requires the gradient of the objective function.

First note that due to the definition of CDF, the PDF fFi|Ck
of a random variable Fi | Ck

is the derivative of the corresponding CDF FFi|Ck

dFFi|Ck

dti
= fFi|Ck

.

For the complementary CDF F̄Fi|Ck
the relationship with PDF is

dF̄Fi|Ck

dti
=

d

dti
(1− FFi|Ck

) = −fFi|Ck
.

These relationships allow the gradient of ITRMI to be easily calculated.

The partial derivatives of the functions derived in the Section 4.4 needed for the calcula-
tion of the gradient of ITRMI for i, k, ` ∈ [n] are

∂

∂t`
P(Pi | Ck) =

{
−fFi|Ck

(ti) ·
∏

j∈[n](ti)\{i} FFj |Ck
(tj) if i = `

F̄Fi|Ck
(ti) · fF`|Ck

(t`) ·
∏

j∈[n]\{i,`} FFj |Ck
(tj) if i 6= `

∂

∂t`
P(Pi) =

n∑
j=1

P(Cj)
∂

∂t`
P(Pi | Cj)

∂

∂t`
P(M) =

n∑
j=1

∂

∂t`
P(Pj)

∂

∂t`
P(Pi |M) =

P(M) ∂
∂t`

P(Pi)− P(Pi)
∂
∂t`

P(M)

(P(M))2

46

∂

∂t`
P(Ck |M) =

(
P(M)

∑n
j=1

∂
∂t`

P(Pj ∩ Ck)
)
−
(∑n

j=1 P(Pj ∩ Ck)
∂
∂t`

P(M)
)

(P(M))2

∂

∂t`
P(Pi | Cj,M) =

P(M | Cj)
∂
∂t`

P(Pi | Cj)− P(Pi | Cj)
∂
∂t`

P(M | Cj)

(P(M | Cj))
2

∂

∂t`
P(M | Cj) =

n∑
i=1

∂

∂t`
P(Pi | Cj)

where the partial derivatives are taken with respect to the threshold t` of the feature
for class `. Now only the partial derivatives of ITRMI remain to be found to be able to
calculate the gradient of ITRMI .

To present the partial derivatives of mutual information more compactly, note that mutual
information of random variables P and C can be calculated as

I(P,C) = H(C)−H(C | P) = H(P)−H(P | C)

where H(C) is the entropy of C and H(C | P) is the conditional entropy. For C, Entropy
shows the average amount of information in the correct classes and the conditional entropy
H(C | P) shows how much additional information is needed to know the correct class,
given that the predicted class is known. Formulas for calculating entropy and conditional
entropy are

H(P) = −
n∑

i=1

P(Pi) log2 P(Pi)

H(P | C) =
n∑

j=1

P(Cj)H(P | C = j).

and the corresponding partial derivatives are

∂

∂t`
H(P) = −

n∑
i=1

ln(P(Pi)) + 1

ln 2

∂

∂t`
P(Pi)

∂

∂t`
H(P | C) =

n∑
j=1

(
H(P | Cj)

∂

∂t`
P(Ck) + P(Ck)

∂

∂t`
H(P | Cj)

)
.

Finally, the partial derivatives of mutual information, M̂DT and ÎTRMI are

∂

∂t`
I(P |M,C |M) =

∂

∂t`
H(P |M)− ∂

∂t`
H(P | C,M),

∂

∂t`
M̂DT = − s

(P(M))2
· ∂

∂t`
P(M)

and

∂

∂t`
ITRMI =

(
M̂DT ∂

∂t`
I(P |M,C |M)− I(P |M,C |M)

∂

∂t`
M̂DT

)
60

M̂DT
2

47

where

I(P |M,C |M) =
n∑

i=1

n∑
j=1

P(Pi | Cj,M)P(Cj |M) log2

(
P(Pi | Cj,M)

P(Cj |M)

)
.

Thus the gradient of ÎTRMI is

∇ÎTRMI =

(
∂

∂t1
ÎTRMI , . . . ,

∂

∂tn
ÎTRMI

)T

.

Therefore, it has been shown that the gradient of the proposed performance measure can
be calculated using just the CDFs, PDFs described in Section 4.4 and class probabilities.
As the gradient shows the direction of the greatest rate of increase, it can be used to find
the thresholds that maximise ITR.

4.6 Method of finding the thresholds

In this section, the proposed method of finding the cut-off thresholds for classification
described in sections 4.1–4.5 is summarised. First, assumption was made that the features
are conditionally independent conditioned on correct class and that the features are from
known conditional distribution, conditioned on correct class, for which PDF and CDF can
be calculated. It was observed in Section 4.4 that skew normal distribution fits the data
well. The parameters of the distribution can be calculated using least squares method
for curve fitting, or if the closed form solution for calculating the maximum likelihood
estimates of the parameters is known, this can be used instead.

Then, a way of estimating online ITR of a classifier given offline results was proposed
in Section 4.2 and in Section 4.3 an ITR calculation method was derived that does not
make the strong assumptions that the standard ITR calculation method makes. Results
from these sections were used to define the performance measure that is used in finding
the optimal thresholds.

In Section 4.4 it was shown that the proposed performance measure can be calculated
directly from CDFs of the conditional feature distribution and the proportion of classes
and in section 4.5 the gradient of the performance measure was calculated. This gradient
can be used to find thresholds that maximise the proposed performance measure. In
this work, gradient descent, or rather gradient ascent algorithm is used to solve the
maximisation task.

The performance measure to be maximised is the function ÎTRMI(~t) where ~t = (t1, . . . , tn)
denotes the vector of thresholds. The idea of the gradient descent algorithm is simple.
It starts at a point ~t0 which might be randomly chosen or chosen by some heuristic and
calculates the gradient at this point. Depending on how large the gradient is, the input
~t0 is updated by the rule

~tm+1 = ~tm + µ∇ITR(~tm)

where µ is input parameter for the algorithm called step size. As gradient gets smaller,
that is the function value approaches a local maximum, the updating step gets also

48

smaller, until it converges, that is meets stopping criteria. The output of the algorithm
is the vector ~t which gave the largest value of ITR.

In this work different values of µ were used for different feature extraction methods
and different BCI parameters. The stopping criteria was that if the ITR improves less
than 10−6 in two consecutive steps, then the algorithm stops and returns the thresholds.
Twenty different initialisation points were used and the final result was the threshold
vector that corresponded to the largest ITR of the obtained results.

Thus by using an optimisation algorithm the thresholds that maximise the performance
measure can be found and therefore, the problem of finding optimal thresholds for clas-
sifying the targets of a BCI as described in Section 4.1 is solved.

4.7 Empirically choosing parameters

In this section the effect of normalising features and using moving average filter (MAF)
filter on features before classification is investigated. Normalising features provides better
overview of how large the feature for one class is compared to the features of other classes
at the same time step. Using MAF filter can be beneficial to average out sudden changes
in feature values that most likely can be attributed to noise. MAF of length m works by
replacing each m consecutive values with their average.

For testing how MAF and normalising affect the classification, all the data from dataset [2]
was used. The classifier was evaluated using 5-fold cross validation, thus in each fold there
are 1 fold of data for testing and 4 folds for training. The thresholds were chosen as the
mean thresholds from 4-fold cross validation of the training data. In each fold of the 4-fold
cross validation, the gradient descent algorithm was ran as described in Section 4.5.

The results can be seen in tables 4.3 and 4.4. CCA and PSDA feature extraction methods
were used, both with 3 harmonics for each class. Both methods were used with window
length of w = 1 second and time step of s = 0.125 seconds. Feature “PSDA” denotes
the sum of feature values for all three harmonics; “PSDA_1” and “PSDA_2” correspond
to the first and second harmonic respectively. “Pred” denotes the number of predictions
made.

It can be seen from the tables that as hypothesised in the beginning of the section,
using MAF filter and normalised features indeed slightly improves the performance of
the classifier.

4.8 Combining features from different extraction
methods

So far, the classification has only been discussed in the case where there are n classes, each
class has a corresponding feature and for each feature a threshold is found. But it would
be desirable to combine features from different feature extraction methods in which case
each class would have multiple features. Using multiple feature extraction methods has
the benefit of providing more information to the classifier and thus potentially making
the BCI more accurate.

49

Table 4.3: Effect of normalising features.

(a) Not normalised features.

S1 S2 S3 S4 Avg

ITRMI 58.90 42.01 9.56 9.26 29.93

ITR 66.53 44.78 11.10 5.22 31.91

ACC 0.97 0.88 0.66 0.53 0.76

MDT 1.20 1.23 1.76 1.38 1.39

CCA

Pred 643 595 240 417 473.75

ITRMI 33.06 24.34 0.58 0.00 14.49

ITR 33.22 21.03 0.20 0.00 13.61

ACC 0.81 0.73 0.30 0.33 0.54

MDT 1.24 1.32 1.36 71.50 18.85

PSDA

Pred 582 477 439 3 375.25

ITRMI 29.47 21.31 1.93 0.00 13.18

ITR 30.20 17.07 3.77 0.03 12.77

ACC 0.77 0.66 0.18 0.25 0.47

MDT 1.16 1.16 1.30 53.84 14.36

PSDA_1

Pred 743 746 503 4 499.00

ITRMI 8.99 5.00 2.03 0.00 4.00

ITR 4.20 3.07 1.01 0.16 2.11

ACC 0.50 0.48 0.25 0.00 0.31

MDT 1.20 1.22 1.35 212.75 54.13

PSDA_2

Pred 649 616 445 1 427.75

ITRMI 32.60 23.16 3.52 2.32 15.40

ITR 33.54 21.49 4.02 1.35 15.10

ACC 0.76 0.69 0.35 0.28 0.52

MDT 1.20 1.23 1.44 84.87 22.19

Average

Pred 654.25 608.50 406.75 106.25 443.94

(b) Normalised features.

S2 S3 S4 Avg

ITRMI 62.03 47.43 11.17 12.25 33.22

ITR 60.49 44.90 11.97 8.91 31.56

ACC 0.92 0.85 0.68 0.60 0.77

MDT 1.11 1.12 1.83 1.47 1.38

CCA

Pred 910 857 223 355 586.25

ITRMI 38.98 24.82 14.57 2.24 20.15

ITR 36.42 20.62 10.14 1.06 17.06

ACC 0.80 0.70 0.58 0.42 0.62

MDT 1.08 1.17 1.04 1.38 1.17

PSDA

Pred 1016 727 1250 420 853.25

ITRMI 32.25 24.33 7.37 3.81 16.94

ITR 30.48 19.48 4.98 0.29 13.81

ACC 0.76 0.69 0.50 0.40 0.59

MDT 1.07 1.17 1.03 2.89 1.54

PSDA_1

Pred 1078 723 1338 105 811.00

ITRMI 10.28 5.49 6.90 0.76 5.86

ITR 4.14 2.04 4.40 0.45 2.76

ACC 0.51 0.45 0.49 0.41 0.47

MDT 1.37 1.34 1.03 2.37 1.53

PSDA_2

Pred 426 453 1350 142 592.75

ITRMI 35.89 25.52 10.00 4.76 19.04

ITR 32.88 21.76 7.87 2.68 16.30

ACC 0.75 0.67 0.56 0.46 0.61

MDT 1.16 1.20 1.23 2.03 1.41

Average

Pred 857.50 690.00 1040.3 255.50 710.81

To combine multiple feature extraction methods linear discriminant analysis (LDA) was
used in this work. LDA is a dimensionality reduction and classification method that finds
a projection of the input data to a lower dimensional space so that the variance between
the classes is maximised with respect to the variance within the classes. To classify a
sample, LDA finds which class mean is closest to the sample in the lower dimensional
space and classifies the sample as this class. Therefore, decision borders can be found in
the lower dimensional space that divide the samples into different classes.

LDA can be used to reduce the number of features when multiple feature extraction
methods are used by finding the described lower dimensional space and calculating the
signed distances of the samples to the decision borders. If there are n > 2 classes, there
will be n decision borders and therefore n distances for each sample. These distances can
be interpreted as confidence scores for corresponding classes. Therefore, no matter how
many features there are, LDA always projects the data into n− 1 dimensional space and
finds n hyperplanes as decision borders, thus giving one feature for each class.

By taking again the data of subject 1 from [2] as an example and using the same features as
shown in Table 4.4, the samples are projected to lower dimensional space (see Figure 4.6).
In Figure 4.5 it can be seen that skew normal distribution fits well the new features too.

To summarise, LDA can take each sample’s m features extracted by the feature extraction

50

Table 4.4: Effect of normalising features when using MAF filter on features.

(a) Not normalised features.

S1 S2 S3 S4 Avg

ITRMI 52.15 43.86 12.23 14.31 30.64

ITR 57.59 47.97 13.47 8.11 31.79

ACC 0.97 0.94 0.73 0.62 0.81

MDT 1.42 1.48 2.10 1.79 1.70

CCA

Pred 694 579 214 311 449.50

ITRMI 35.30 25.12 0.29 0.00 15.18

ITR 37.12 20.27 0.13 0.09 14.40

ACC 0.87 0.75 0.30 0.20 0.53

MDT 1.47 1.55 1.75 42.75 11.88

PSDA

Pred 606 485 334 5 357.50

ITRMI 34.22 25.35 1.77 0.00 15.34

ITR 35.16 18.42 0.00 0.00 13.40

ACC 0.85 0.72 0.33 0.33 0.56

MDT 1.43 1.47 1.61 35.81 10.08

PSDA_1

Pred 673 608 427 6 428.50

ITRMI 10.56 6.51 1.81 0.00 4.72

ITR 5.64 4.66 0.37 0.50 2.79

ACC 0.55 0.54 0.28 0.00 0.34

MDT 1.49 1.62 1.59 70.50 18.80

PSDA_2

Pred 567 423 444 3 359.25

ITRMI 33.06 25.21 4.03 3.58 16.47

ITR 33.88 22.83 3.49 2.17 15.59

ACC 0.81 0.74 0.41 0.29 0.56

MDT 1.45 1.53 1.76 37.71 10.62

Average

Pred 635.00 523.75 354.75 81.25 398.69

(b) Normalised features.

S1 S2 S3 S4 Avg

ITRMI 55.60 47.33 13.71 14.47 32.78

ITR 54.52 44.08 16.12 9.91 31.16

ACC 0.94 0.90 0.74 0.63 0.80

MDT 1.33 1.37 1.90 1.61 1.55

CCA

Pred 1008 857 270 433 642.00

ITRMI 43.41 28.20 16.68 5.06 23.34

ITR 40.93 22.90 11.18 2.84 19.46

ACC 0.87 0.76 0.62 0.49 0.68

MDT 1.33 1.41 1.29 1.56 1.40

PSDA

Pred 995 718 1231 479 855.75

ITRMI 37.49 23.87 8.44 1.09 17.72

ITR 36.36 17.18 6.15 0.10 14.95

ACC 0.85 0.69 0.54 0.36 0.61

MDT 1.34 1.35 1.30 1.51 1.37

PSDA_1

Pred 974 905 1222 542 910.75

ITRMI 15.96 7.52 8.01 1.22 8.17

ITR 7.52 3.29 5.08 0.19 4.02

ACC 0.59 0.51 0.52 0.37 0.50

MDT 1.57 1.74 1.28 1.41 1.50

PSDA_2

Pred 467 337 1349 729 720.50

ITRMI 38.11 26.73 11.71 5.46 20.50

ITR 34.83 21.86 9.63 3.26 17.40

ACC 0.81 0.71 0.61 0.46 0.65

MDT 1.39 1.47 1.44 1.52 1.46

Average

Pred 861.00 704.25 1018 545.75 782.25

Table 4.5: CCA and PSDA features combined with LDA.

S1 S2 S3 S4 Avg

ITRMI 57.85 47.66 36.83 8.95 37.82

ITR 56.13 42.25 33.55 8.99 35.23

ACC 0.95 0.89 0.86 0.63 0.83

MDT 1.34 1.39 1.51 1.72 1.49

Pred 974 794 535 348 662.75

methods as input, wherem can be larger than the number of classes n, and produces n new
features that correspond to the confidence scores of the sample belonging to corresponding
classes. Thus LDA can be used to combine information from different feature extraction
methods or from the features of different classes.

To see how well combining features with LDA works compared to using just one feature
extraction method, consider the Table 4.5. In this table, the results of using the described
threshold finding method on the new features can be seen. As can be seen from tables 4.3
and 4.4, on average combining features from different feature extraction methods indeed
outperforms each of the methods separately.

51

−10−5 0 5
0.0

0.1

0.2

0.3

0.4
C
=
1

fF1|C

−10−5 0 5
0.0

0.1

0.2

0.3

0.4

fF2|C

−10−5 0 5
0.0

0.1

0.2

0.3

0.4

fF3|C

−10−5 0 5
0.0

0.1

0.2

0.3

0.4

C
=
2

−10−5 0 5
0.0

0.1

0.2

0.3

0.4

−10−5 0 5
0.0

0.1

0.2

0.3

0.4

−10−5 0 5
0.0

0.1

0.2

0.3

0.4

C
=
3

−10−5 0 5
0.0

0.1

0.2

0.3

0.4

−10−5 0 5
0.0

0.1

0.2

0.3

0.4

Figure 4.5: Skew normal fits projected samples.

−6 −4 −2 0 2 4

0

5

(A) LDA transform on training set.

1
2
3

−6 −4 −2 0 2 4

0

5

(B) LDA transform on test set.

1
2
3

Figure 4.6: Samples in lower dimensional space.

52

5 Results

5.1 Feature value change over time

In the results given in previous sections, it was not addressed how the feature values
change over time. To know how well the classifier would work in online case, it is impor-
tant to know whether a feature value is below its threshold for very long periods of time
or it is able to make predictions in roughly equal time steps. This is especially important
in the case with added “nothing” class as too many consecutive predictions predictions
to “nothing” class would make the BCI unresponsive.

In figures 5.1 and 5.2, the changes of feature values of subject 1 from dataset [2] are
depicted. In this case, CCA and PSDA feature extraction methods were used, both with
three harmonics, and their features were combined with LDA as described in Section 4.8.

As can be seen from the figures, the predictions are not accumulated around certain time
interval, but happen every with similar frequency over the whole training and test set.
Therefore, it can be expected that for subject 1 the BCI would not have long unresponsive
periods in online case and the classifier is thus suitable for online usage.

0 100 200 300 400 500 600 700 800 900 1,0001,1001,2001,3001,400

−10

0

10

F
1

0 100 200 300 400 500 600 700 800 900 1,0001,1001,2001,3001,400

−10

−5

0

5

F
2

0 100 200 300 400 500 600 700 800 900 1,0001,1001,2001,3001,400

−5

0

5

F
3

Figure 5.1: Feature value over time in training set. When dashed line is higher for
a feature, this means that the corresponding target is currently the expected target.
Straight line denotes cut-off threshold.

53

0 50 100 150 200 250 300 350

−10

0

10

F
1

0 50 100 150 200 250 300 350
−10

−5

0

5

F
2

0 50 100 150 200 250 300 350

−5

0

F
3

Figure 5.2: Feature value over time in test corresponding to the training set used in
Figure 5.1.

5.2 Comparison to Random Forest

In this section, the proposed classification method is compared to the widely used Random
Forest. It should be noted, however, that in this comparison Random Forest is at a
disadvantage, because the proposed method can not make a prediction if it is uncertain
about a sample while Random Forest has to classify all the samples. Random Forest was
used with 50 trees, the rest of the parameters were the default parameters provided by
scikit-learn version 0.18.1 [23].

To make this comparison more fair, the proposed classifier will also be forced to classify
all the samples. The rule for classifying the samples for which either more than one
feature value was larger than its threshold or all the feature values were lower than their
thresholds will be the following: these samples will be classified to the class k whose
feature value’s fk signed distance to its threshold tk is the largest

arg max
k
fk − tk. (5.1)

The results will be shown for both, the original proposed classifier and the classifier
which is not allowed to predict “nothing”. The results can be seen in Table 5.1. As
hypothesised before, the proposed classifier outperforms Random Forest as it is designed
to maximise ITR and can not classify a sample. The current test shows that Random
Forest is slightly better than the classifier that does not predict “nothing”. The higher
ITR was achieved thanks to having lower MDT and lower MDT was achieved because
the proposed classifier used MAF filter. Few additional tests suggest that without MAF

54

filter the proposed classifier without “nothing” class is practically as good as Random
Forest.

Table 5.1: Comparison of the proposed classifier to Random Forest when without using
MAF filter.

S2 S2 S1 S3 S1 Avg

PSDA
PSDA

CCA

MEC

LRT

PSDA

CCA

PSDA

CCA

ITRMI 15.60 31.01 24.71 19.08 40.40 26.16

ITR 10.95 26.03 22.70 15.62 38.63 22.79

ACC 0.58 0.71 0.83 0.63 0.79 0.71

MDT 1.00 1.00 2.00 1.00 1.00 1.20

Random

Forest

Pred 1695 1695 1575 1695 1695 1671

ITRMI 16.47 31.62 25.39 19.32 41.91 26.94

ITR 12.18 26.94 22.83 13.12 38.31 22.68

ACC 0.59 0.72 0.83 0.60 0.79 0.71

MDT 1.00 1.00 2.00 1.00 1.00 1.20

Proposed

classifier

without

“nothing”
Pred 1695 1695 1575 1695 1695 1671

ITRMI 32.37 53.73 36.31 33.19 64.62 44.04

ITR 30.14 48.31 34.84 27.61 62.33 40.65

ACC 0.80 0.89 0.94 0.82 0.94 0.88

MDT 1.32 1.22 2.08 1.56 1.14 1.47

Proposed

classifier

Pred 479 606 940 308 790 624.6

Table 5.2: Comparison of the proposed classifier to Random Forest when using MAF
filter.

S1 S1 S1 S3 S4 S2 Avg

CCA

PSDA
CCA

CCA

PSDA
LRT

CCA

PSDA

CWT

LRT

Window 1 1 2 2 4 2

ITRMI 47.65 39.27 33.39 5.85 2.46 24.43 25.51

ITR 45.91 36.11 32.61 5.76 0.97 23.54 24.15

ACC 0.83 0.77 0.91 0.59 0.48 0.84 0.74

MDT 1 1 2 2 4 2 2

Random

Forest

Pred 1665 1665 1545 1545 1305 1545 1545

ITRMI 38.48 36.45 29.33 9.05 1.80 21.26 22.73

ITR 36.26 33.59 27.93 8.89 0.02 19.89 21.10

ACC 0.83 0.81 0.91 0.67 0.35 0.83 0.73

MDT 1.25 1.25 2.25 2.25 4.25 2.25 2.25

Proposed

classifier

without

“nothing”
Pred 1665 1665 1545 1545 1305 1545 1545

ITRMI 58.18 56.46 34.47 20.99 5.65 31.49 34.54

ITR 56.42 55.26 32.98 20.87 1.74 31.34 33.10

ACC 0.95 0.95 0.95 0.87 0.55 0.94 0.87

MDT 1.34 1.34 2.29 2.55 5.12 2.36 2.5

Proposed

classifier

Pred 976 989 1151 458 164 814 758

Therefore, due to the possibility of predicting “nothing” class, the proposed classifier
outperforms Random Forest. If the proposed classifier is not allowed to predict “nothing”
and is forced to use rule (5.1) instead, then the performance is similar to Random Forest.

5.3 Comparison to related work

As was the case with Random Forest in the previous section, it is complicated to compare
the proposed classifier to the related articles. In most of the articles, it is not mentioned

55

that the classifier can not make a prediction. However, in two of the articles the it is
used, namely the article by Demir et al. [7] and the article by Jukiewicz and Cysewska-
Sobusiak [15].

In the article by Demir et al. [7] much longer MDT was used than in this thesis and their
achieved ITR was therefore very low. For example, highest accuracy with 4 second MDT
is reported to be 73% while in our work, over 80% average accuracy was achieved with
MDT of ∼1.5 seconds.

In the work by Jukiewicz and Cysewska-Sobusiak [15] only two classes 8 Hz and 14 Hz
were used and the highest reported accuracy is 93% with average over the subjects around
74%. These results were also outperformed in this work. For example, classifying with
combination of CCA and PSDA features gave highest accuracy of 95% with average over
subjects of 83% as shown in Table 4.5.

The results of the rest of the articles can be seen in Table 3.6. Since in these articles pos-
sibility of not predicting was not used, the results cannot be directly compared. However,
it is clear that the proposed classifier performs very well and if it does not outperform
the classifiers from related work, it very likely performs at similar level.

56

Conclusion

The aim of this thesis has been to derive a method for optimising thresholds of a clas-
sification rule for SSVEP-based BCI. In the first chapter, the biological background and
author’s previous work was discussed to understand the basics of SSVEP-based BCIs.

The second chapter discussed the feature extraction methods that were implemented in a
BCI that is a practical part of this thesis. Widely used PSDA and CCA feature extraction
methods were described and in addition to these, more recent methods of LRT, MEC
and CWT were presented.

In the third chapter a literature overview was provided to understand what has been
done recently in the field and to be able to compare the obtained results to the state of
the art.

Fourth chapter is the main contribution of the author. In this chapter, a simple classi-
fication rule based on thresholds was presented and in the following sections a method
of finding optimal thresholds was derived. Along the way, online estimates of MDT and
ITR were derived and a formula for calculating transferred information through mutual
information was presented. Finally, after calculating the performance measure and its
gradient, a gradient descent algorithm was used to optimise the thresholds.

In the fifth chapter the performance of the proposed classifier was compared to Random
Forest and also to the related articles about which an overview was given in Chapter 3.

57

References

[1] S. F. Anindya, H. H. Rachmat, and E. Sutjiredjeki. A prototype of SSVEP-based
BCI for home appliances control. In 2016 1st International Conference on Biomedical
Engineering (IBIOMED), pages 1–6, 2016.

[2] H. Bakardjiana, T. Tanakaa, and A. Cichocki. Optimization of SSVEP
brain responses with application to eight-command Brain-Computer Inter-
face. Neuroscience Letters, 469(1):34–38, 2010. http://www.bakard-
jian.com/work/ssvep_data_Bakardjian.html. (24.04.2017).

[3] G. Bin, X. Gao, Y. Wang, B. Hong, and S. Gao. VEP-based brain-computer inter-
faces: Time, frequency, and code modulations. Computational Intelligence Magazine,
IEEE, 4(4):22–26, 2009.

[4] G. Buzsáki, C. A. Anastassiou, and C. Koch. The origin of extracellular fields and
currents–EEG, ECoG, LFP and spikes. Nature Reviews Neuroscience, 13(6):407–420,
2012.

[5] M. Cheng, X. Gao, S. Gao, and D. Xu. Design and implementation of a brain-
computer interface with high transfer rates. Biomedical Engineering, IEEE Trans-
actions on, 49(10):1181–1186, 2002.

[6] A. M. Dale and E. Halgren. Spatiotemporal mapping of brain activity by integration
of multiple imaging modalities. Current Opinion in Neurobiology, 11(2):202––208,
2001.

[7] A. F. Demir, H. Arslan, and I. Uysal. Bio-inspired Filter Banks for SSVEP-based
Brain-computer Interfaces. In 2016 IEEE International Conference on Biomedical
and Health Informatics (BHI), Las Vegas, NV, USA, 2016.

[8] M. Duvinage, T. Castermans, M. Petieau, T. Hoellinger, G. Cheron, and T. Dutoit.
Performance of the Emotiv EPOC headset for P300-based applications. BioMedical
Engineering OnLine, 12(56), 2013.

[9] O. Friman, I. Volosyak, and A. Graser. Multiple channel detection of steady-state vi-
sual evoked potentials for brain-computer interfaces. Biomedical Engineering, IEEE
Transactions on, 54:742–750, 2007.

[10] C. S. Herrmann. Human EEG responses to 1–100 Hz flicker: resonance phenomena
in visual cortex and their potential correlation to cognitive phenomena. Experimental
Brain Research, 137(3-4):346–353, 2001.

[11] M. Hoshiyama and R. Kakigi. Effects of attention on pattern-reversal visual evoked
potentials: Foveal field stimulation versus peripheral field stimulation. Brain Topog-
raphy, 13(4):293–298, 2001.

[12] H. Hotelling. Relations between two sets of variates. Biometrika, 28(3-4):321––377,
1936.

58

[13] F. T. Hvaring and A. H. Ulltveit-Moe. A comparison of visual evoked potential
(VEP)-based methods for the low-cost Emotiv EPOC neuroheadset. Master’s thesis,
Norwegian University of Science and Technology, 2014.

[14] A. Ingel. Control a Robot via VEP Using Emotiv EPOC. Bachelor’s Thesis, Uni-
versity of Tartu, 2015.

[15] M. JUKIEWICZ and A. CYSEWSKA-SOBUSIAK. Implementation of Bilinear Sep-
aration algorithm as a classification method for SSVEP-based brain-computer inter-
face. Measurement Automation Monitoring, 61(2):51–53, 2015.

[16] V. Jurcak, D. Tsuzuki, and I. Dani. 10/20, 10/10, and 10/5 systems revisited:
Their validity as relative head-surface-based positioning systems. NeuroImage,
34(4):1600–1611, 2007.

[17] V. B. R. Karnati, U. S. G. Verma, J. S. Amerineni, and V. H. Shah. Frequency detec-
tion in Medium and High frequency SSVEP based Brain Computer Interface systems
by scaling of sine-curve fit amplitudes. In 2014 First International Conference on
Networks Soft Computing (ICNSC2014), pages 300–303, 2014.

[18] J. D. Kropotov. Quantitative EEG, Event-Related Potentials and Neurotherapy.
Academic Press, San Diego, 2009.

[19] Y.-P. Lin, Y. Wang, and T.-P. Jung. Assessing the feasibility of online SSVEP
decoding in human walking using a consumer EEG headset. NeuroEngineering and
Rehabilitation, 11(119), 2014.

[20] Z. Lin, C. Zhang, W. Wu, and X. Gao. Frequency Recognition Based on Canonical
Correlation Analysis for SSVEP-based BCIs. Biomedical Engineering, 54(6), 2007.

[21] Y. Liu, X. Jiang, T. Cao, F. Wan, P. U. Mak, P.-I. Mak, and M. I. Vai. Implemen-
tation of SSVEP based BCI with Emotiv EPOC. Virtual Environments Human-
Computer Interfaces and Measurement Systems (VECIMS), 2012 IEEE Interna-
tional Conference, pages 34–37, 2012.

[22] P. Olejniczak. Neurophysiologic basis of EEG. Journal of Clinical Neurophysiology,
23(3):186–189, 2006.

[23] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Courna-
peau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[24] D. Purves, G. J. Augustine, D. Fitzpatrick, W. C. Hall, A.-S. Lamantia, J. O.
McNamara, and S. M. Williams, editors. Neuroscience. Sinauer Associates Inc, 3
edition, 2004.

[25] P. Stoica and R. L. Moses. Spectral Analysis of Signals. Prentice Hall, 1 edition,
2005.

[26] F. Teng, Y. Chen, A. M. Choong, S. Gustafson, C. Reichley, P. Lawhead, and
D. Waddell1. Square or sine: Finding a waveform with high success rate of eliciting
SSVEP. Computational Intelligence and Neuroscience, 2011, 2011.

59

[27] L. Tong, R. w. Liu, V. C. Soon, and Y. F. Huang. Indeterminacy and identifiability
of blind identification. IEEE Transactions on Circuits and Systems, 38(5):499–509,
1991.

[28] Alzheimer’s Disease: Unraveling the Mystery. U. S. Department of Health and
Human Services, National Institutes of Health, 2002. (NIH Publication No. 02-3782).

[29] Y. Velchev, D. Radev, and S. Radeva. Features Extraction Based on Subspace Meth-
ods with Application to SSVEP BCI. International Journal of Emerging Engineering
Research and Technology, 4(1):52–58, 2016.

[30] I. Volosyak. SSVEP-based Bremen-BCI interface–boosting information transfer
rates. Journal of Neural Engineering, 8(3), 2011.

[31] J. R. Wolpaw, H. Ramoser, D. J. McFarland, and G. Pfurtscheller. EEG-Based
Communication: Improved Accuracy by Response Verification. IEEE Transactions
on Rehabilitation Engineering, 6(3):326–333, 1998.

[32] A. G. Yehia, S. Eldawlatly, and M. Taher. Principal component analysis-based
spectral recognition for SSVEP-based Brain-Computer Interfaces. In 2015 Tenth In-
ternational Conference on Computer Engineering Systems (ICCES), pages 410–415,
2015.

[33] W. Yijun, W. Ruiping, G. Xiaorong, and G. Shangkai. Brain-computer interface
based on the high-frequency steady-state visual evoked potential. First International
Conference on Neural Interface and Control Proceedings, 2005:37–39, 2005.

[34] A. Zani, A. M. Proverbio, and M. I. Posner, editors. The Cognitive Electrophysiology
of Mind and Brain. Academic Press, San Diego, 2003.

[35] Y. Zhang, L. Dong, R. Zhang, D. Yao, Y. Zhang, and P. Xu. An Efficient Fre-
quency Recognition Method Based on Likelihood Ratio Test for SSVEP-Based BCI.
Computational and Mathematical Methods in Medicine, 2014, 2014.

[36] Z. Zhang, X. Li, and Z. Deng. A CWT-based SSVEP classification method for brain-
computer interface system. In 2010 International Conference on Intelligent Control
and Information Processing, pages 43–48, 2010.

[37] D. Zhu, J. Bieger, G. G. Molina, and R. M. Aarts. A survey of stimulation meth-
ods used in SSVEP-based BCIs. Computational Intelligence and Neuroscience,
2010:1–13, 2010.

[38] B. J. Zier. SSVEP-based brain computer interface using the Emotiv EPOC. Master’s
thesis, Eastern Washington University, 2012.

Internet URLs were valid on 18.05.2017

60

Appendices

I Code of the application

The application written as a practical part of this thesis is open-source and the code is
accessible from Github repository1.

1https://github.com/kahvel/VEP-BCI

61

II Acronyms

AMUSE algorithm for multiple unknown signals extraction 29, 30

BCI brain-computer interface 2, 7–14, 16, 19–22, 24, 25, 31, 33, 35–39, 49, 53, 57, 65

BIFB bio-inspired filter bank 26

BSS blind source separation 29, 30

CAR common average reference 32

CCA canonical correlation analysis 12–17, 27, 32, 33, 41, 43, 49, 53, 56, 57

CDF cumulative distribution function 41–43, 45, 46, 48, 64

CWT continuous wavelet transform 13, 19, 20, 57

EEG electroencephalography 2, 3, 7–10, 12–21, 24, 26–28, 32, 36, 37, 41, 64, 65

ERP event-related potential 7, 9

FFT fast Fourier transform 13, 26

FPR false positive rate 22

ITR information transfer rate 2, 17, 21, 22, 28, 30, 36–40, 46, 48, 49, 54, 56, 57

LDA linear discriminant analysis 32, 50, 51, 53

LRT likelihood ratio test 13, 16, 17, 57

MAF moving average filter 32, 49, 51, 54

MDT mean detection time 21, 22, 33, 36–38, 45, 54, 56, 57

MEC minimum energy combination 13, 14, 17, 18, 57

MUSIC multiple signal classification 23, 24

PCA principal component analysis 32

PDF probability density function 41, 42, 45, 46, 48

PPV positive predictivity value 22, 25

PSD power spectral density 14, 23–26, 64, 65

PSDA power spectral density analysis 12–14, 16, 19, 20, 23, 25–28, 32, 49, 53, 56, 57

RBF radial-base function 26, 28

ROC receiver operating characteristic 22

SNR signal-to-noise ratio 14, 25

62

SSVEP steady-state visual evoked potential 2, 7–14, 16, 18, 20, 21, 24, 25, 31, 33, 36,
37, 57

SVD singular value decomposition 15, 30, 31

SVM support vector machine 25, 26, 28–30

TPR true positive rate 22, 25

VEP visual evoked potential 7, 9, 10, 26, 65

63

III Glossary

action potential – event of sending a signal by a neuron. 7

axon – nerve fibre through which a neuron sends signals. 7

central visual field – very centre of gaze that is clearly seen. 10

complementary CDF – . 41–43, 46

current dipole – source of the electrical activity that can be measured from the scalp
using EEG. 7, 8, 10

dendrite – nerve ending through which a neuron receives signals. 7

detrend – removing the trend from a signal. 12

entropy – . 47

feature extraction – extracting information that can be used for classification from the
signal 11–14, 16, 17, 23, 25, 26, 28, 31, 32, 35–37, 41, 49–51

flickering – the blinking or the state switches of a target. 9–11, 14, 21, 26

flickering waveform – waveform obtained when plotting the state switches of a target.
11

Fourier transform – transforming a signal from time domain to frequency domain. 12,
13, 19

frequency bin – a value at which the estimated PSD function is defined. 14

frequency component – a pure tone that a signal contains. 28, 64

fundamental – frequency component of a signal that has the lowest frequency among
all the frequency components. 64

fundamental frequency – frequency of the component of a signal that has the lowest
frequency among all the frequency components. 9, 10

harmonic – frequency component of a signal that is an integer multiple of the funda-
mental frequency. 9, 11, 12, 14, 15, 18, 27, 43, 49

interpolation – approximating unknown values between known values. 12

linear combination – for a sequence of values, each value is multiplied by a constant
and the result is added up. 18

mean – the measure of central tendency. 12

mother wavelet – function from which the shifted and scaled wavelets are generated
from. 19

mutual information – . 39, 40, 45, 57

64

neuron – nerve cell, main building block of the brain. 7, 10, 64, 65

periodogram – estimate of PSD. 14, 23, 25–27, 32

peripheral vision – not the centre of gaze but the area that surrounds the centre and
is not as clearly seen. 10

postsynaptic neuron – a neuron that received a signal through a synapse. 7

pure tone – waveform that contains only one frequency. 64

refresh rate – the number of consecutive images shown on screen in one second. 11, 21

sampling rate – rate at which samples are obtained for example from an EEG device.
8, 14, 15, 21

state – state of a target. 64

synapse – a connection between neurons. 7, 65

target – a visual stimulus of a VEP-based BCI 9–12, 14–16, 18–22, 24, 26, 27, 29, 31–33,
35–38, 41, 43, 49, 64, 65

trend – steady increase or decrease of values in a signal. 12, 64

visual processing centre – part of the brain that is responsible for visual perception.
9, 10

wavelet – oscillating wave-like function with an amplitude that begins and ends at zero.
19, 20

window – a function that is used to smooth the ends of a signal. 12, 26, 27

65

Licence

Non-exclusive licence to reproduce thesis and make thesis public

I, Anti Ingel (16.02.1993)

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1 reproduce, for the purpose of preservation and making available to the public,
including for addition to the DSpace digital archives until expiry of the term
of validity of the copyright, and

1.2 make available to the public via the web environment of the University of
Tartu, including via the DSpace digital archives until expiry of the term of
validity of the copyright,

of my thesis
Machine Learning in VEP-based BCI
supervised by Ilya Kuzovkin and Raul Vicente

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual
property rights or rights arising from the Personal Data Protection Act.

Tartu 18.05.2017

66

	Introduction
	Background information
	Biological background
	Electrical activity in the brain
	Electroencephalography
	Steady-state visual evoked potential
	Conclusion

	Brain-computer interface
	Visual stimuli
	Signal pipeline

	Feature extraction methods for SSVEP-based BCI
	Power spectral density analysis
	Canonical correlation analysis
	Likelihood ratio test
	Minimum energy combination
	Continuous wavelet transform

	Related work
	SSVEP dataset for offline experiments
	Performance measures
	Articles using BIOSEMI dataset for BCI evaluation
	Features extraction based on subspace methods with application to SSVEP BCI
	A prototype of SSVEP-based BCI for home appliances control
	Bio-inspired filter banks for SSVEP-based brain-computer interfaces
	Implementation of bilinear separation algorithm as a classification method for SSVEP-based brain-computer interface
	Frequency detection in medium and high frequency SSVEP based brain computer interface systems by scaling of sine-curve fit amplitudes
	Principal component analysis-based spectral recognition for SSVEP-based brain-computer interfaces
	Conclusion

	Proposed classification method
	Classifying with cut-off thresholds
	Online ITR estimation
	ITR for unbalanced classes, predictions and accuracies
	Calculating mutual information for different thresholds
	The rate of change of ITR
	Method of finding the thresholds
	Empirically choosing parameters
	Combining features from different extraction methods

	Results
	Feature value change over time
	Comparison to Random Forest
	Comparison to related work

	Conclusion
	References
	Appendices
	Code of the application
	Acronyms
	Glossary

	Licence

