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Control a Robot via VEP Using Emotiv EPOC

Abstract

This thesis describes an SSVEP-based BCI implemented as a practical part of this work.
One possible usage of a BCI that efficiently implements a communication channel between
the brain and an external device would be to help severely disabled people to control
devices that currently require pushing buttons, for example an electric wheelchair. The
BCI implemented as a part of this thesis uses widely known PSDA and CCA feature
extraction methods and introduces a new way to combine these methods. Combining
different methods improves the performance of a BCI. The application was tested only
superficially and the following results were obtained: 2.61± 0.28 s target detection time,
85.81 ± 6.39 % accuracy and 27.73 ± 5.11 bits/min ITR. The implemented BCI is open-
source, written in Python 2.7, has graphical user interface and uses inexpensive EEG
device called Emotiv EPOC. The BCI requires only a computer and Emotiv EPOC, no
additional hardware is needed. Different EEG devices could be used after modifying the
code.

Keywords

electroencephalography (EEG), brain-computer interface (BCI), steady-state visual evoked
potential (SSVEP), canonical correlation analysis (CCA), power spectrum density anal-
ysis (PSDA), open-source
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Visuaalse stiimuliga esilekutsutud potentsiaali-
del põhinev roboti juhtimine Emotiv EPOC
seadmega

Lühikokkuvõte

Antud töö kirjeldab visuaalse stiimuliga esilekutsutud potentsiaalidel põhinevat aju ning
arvuti vahelist liidest (AAL), mis loodi antud töö praktilise osana. AALi saab kasutada
aju ja seadme vahelise otsese suhtluskanali loomiseks, mis tähendab, et seadmega suhtle-
miseks pole vaja nuppe vajutada, piisab vaid visuaalsete stiimulite vaatamisest. Efektiiv-
ne AAL võimaldaks raske puudega isikutel näiteks elektroonilist ratastooli juhtida. An-
tud töö osana loodud AAL kasutab tuntud kanoonilise korrelatsiooni- ja võimsusspektri
analüüsi meetodeid ning uuendusena kombineerib need kaks meetodit üheks teineteist
täiendavaks meetodiks. Kahe meetodi kombinatsioon muudab AALi täpsemaks. AALi
testiti antud töös vaid pealiskaudselt ning tulemused on järgnevad: ühe käsu edastamise
aeg 2.61±0.28 s, täpsus 85.81±6.39 % ning informatsiooni edastamise kiirus 27.73±5.11
bitt/min. Antud AAL on avatud lähtekoodiga, kirjutatud Python 2.7 programmeerimis-
keeles, sisaldab graafilist kasutajaliidest ning kasutab aju tegevuse mõõtmiseks elektro-
ensefalograafia (EEG) seadet Emotiv EPOC. AALi kasutamiseks on vaja ainult arvutit
ja Emotiv EPOC seadet. Koodi muutes on võimalik kasutada ka teisi EEG seadmeid.

Võtmesõnad

Elektroensefalograafia EEG, aju-arvuti liides (AAL), visuaalne stiimul, kanooniline kor-
relatisoonianalüüs, võimsusspektri analüüs, avatud lähtekood
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Introduction

Over the last decade the question how to implement direct communication channel be-
tween the brain and an external device has received much attention [16, 28, 40, 45, 49, 50].
This communication channel works by translating recorded brain activity into commands
to control the device or the other way round—by sending signals into the brain. Sending
signals into the brain requires a surgery to implant the device that can send those signals.
This approach can be used for example to repair damaged vision or hearing.

Measuring the brain activity, however, can be done without implanting devices into the
brain and therefore it is easier and less expensive than invasive methods. This approach
can be used for example to operate a wheelchair or for typing without having to press
buttons. Nowadays the brain activity can be measured using non-invasive and inex-
pensive devices and thus many people could benefit from an application that efficiently
implements this new communication channel between the brain and an external device.

This thesis describes an application that uses an electroencephalography (EEG) device
called Emotiv EPOC to measure brain activity and translates the recorded signal into
commands to control a robot. The application was written as a practical part of this
thesis and the focus was on implementing an inexpensive application. Compared to
existing applications, the practical part of this thesis combines two widely used methods
called power spectrum density analysis (PSDA) [12] and canonical correlation analysis
(CCA) [28] for extracting information from brain recording in a way which to the best of
the author’s knowledge has not been done before.

The first chapter of this thesis describes the biology of the brain and discusses, what
aspect of the brain activity can actually be measured. In this chapter also different
techniques and devices that can be used to measure brain activity are compared.

The second chapter describes how to evoke a brain response that can be extracted from
the recording of brain activity using only Emotiv EPOC and a laptop computer. The
methods that can be used to analyse the recording are discussed in this chapter.

The third chapter describes the application implemented as a practical part of this thesis.
This chapter contains overview of related works, describes the signal processing and
explains the novelty of the application.
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1 Electrical activity in the brain

The aim of this chapter is to describe the biology of the brain, discuss how brain activity
can be measured and where the measurable activity originates from. In this chapter also
different techniques and devices used to measure brain activity are compared and finally
suitable device for controlling a robot is chosen.

1.1 Source of the electrical activity

As all living organisms are composed of cells, so are humans and the human brain. The
brain consists of nerve cells called neurons and non-neural cells. There are approximately
86 billion neurons in the human brain and roughly as much non-neural cells [2]. The aim
of this section is to describe how neurons interact with each other and discuss what aspect
of this communication can be measured.

A typical neuron has a cell body, multiple nerve endings or dendrites , and one nerve fibre
or axon. Both dendrites and axons can branch multiple times. Neurons interact with
each other via electro-chemical signals that are transmitted through various connections.
These connections are not static and can change over time. The connection between an
axon and a dendrite is called a synapse. See figure 1.1a for an example of neurons and
a synapse. The general rule is that a neuron sends signals through its axon and receives

(a) Neurons and a chemical synapse [41, p. 17]. (b) Action potential [10].

Figure 1.1: The structure of a neuron.
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signals through dendrites. Functionally related neurons are connected to each other and
form neural pathways [23].

To send signals, neurons must be able to maintain electric potential called membrane
potential . Membrane potential of a neuron is the difference in electric potential between
the inside of the neuron and the extracellular fluid around the neuron. When a neuron
is not sending signals or in other words, when neuron is at a resting state, its membrane
potential is slightly negative. The membrane potential of a neuron at a resting state is
called resting potential . Negative resting potential is achieved by having more positively
charged ions around the cell than inside the cell.

By having stable resting potential, neurons are able to send signals by rapidly increasing
and decreasing the membrane potential along an axon. This event is called an action
potential . See figure 1.1b for example. To increase or decrease the membrane potential
of a cell, ionophoric proteins are used. These proteins transport ions across the cell
membrane to regulate the concentration of ions inside the cell. Since ions are electrically
charged, the concentration of ions inside a cell affects the membrane potential of the cell.
The membrane potential of a cell can be increased by transporting positive ions into the
cell and decreased by transporting positive ions out of the cell.

An action potential or signal sending is initiated when the membrane potential of a neuron
exceeds certain threshold value called threshold potential . The membrane potential of a
neuron can increase when the neuron receives signals from other neurons. The neuron that
receives a signal is called postsynaptic cell . The received signal can cause the membrane
potential of the postsynaptic cell to increase or decrease. This change in membrane
potential is called a postsynaptic potential . If the postsynaptic potential is large enough
for the membrane potential to exceed threshold potential, an action potential is initiated
in the postsynaptic cell.

The following paragraph is mainly based on the article by Buzsaki et al. [9]. The post-
synaptic potential is caused by ions flowing into the cell. To achieve electroneutrality, a
balancing flow of ions from the interior to the exterior of the cell is needed. The ions of
the balancing flow have the same electric charge as the entering ions. If the ions flowing
into the cell have positive charge

• the membrane potential of the cell increases;

• location where positive ions enter the cell is called sink ;

• location where positive ions exit the cell is called source; and

• as a result, there are less positive ions around sink and more around source;

If the ions flowing into the cell have negative charge

• the membrane potential of the cell decreases;

• location where negative ions enter the cell is called source;

• location where negative ions exit the cell is called sink; and

• as a result, there are less negative ions around source and more around sink.

8



In both cases, the source is more positively charged than the sink. Since the sink and
the source have different electric potentials, they form a current dipole. See figure 1.2 for
illustration.

(a) Current dipole generated by a
neuron [37, p. 669].

(b) The electric field of an electric dipole1.

Figure 1.2: Current dipole and electric dipole.

Current dipoles are important because it is possible to measure the electric field produced
by these current dipoles from the scalp. See figure 1.2a for illustration. Measuring these
electric fields is further discussed in section 1.3. Although action potentials generate
stronger currents than postsynaptic potentials, their duration is short and nearby neurons
rarely fire synchronously [9]. Thus recording the electrical activity of the brain from the
scalp mainly relies on the electric fields of the current dipoles generated by neurons.

1.2 Overview of functional neuroimaging methods

As discussed in section 1.1, neurons in the brain are sending electrochemical signals to
communicate with each other. There are several techniques available to measure this
activity. The aim of this section is to briefly compare various non-invasive techniques.
Measuring an aspect of brain function is called functional neuroimaging and common
measurement methods divide into haemodynamic and electromagnetic techniques.

Haemodynamic techniques measure blood oxygenation and blood flow in the brain. More
oxygen has to be delivered to more active brain regions and this allows the brain activity to
be measured. Haemodynamic techniques include functional magnetic resonance imaging
(fMRI), functional near-infrared spectroscopy (fNIRS) and positron emission tomography
(PET).

Electromagnetic techniques measure either electrical activity or magnetic fields produced

1http://hyperphysics.phy-astr.gsu.edu/hbase/electric/equipot.html
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by the electrical activity along the scalp. Electromagnetic techniques include EEG and
magnetoencephalography (MEG). These methods have lower temporal resolution than
haemodynamic methods, but measure only the activity in the outer layer of the brain.
Temporal resolution shows how short time period can be reliably separated out by a
measuring technique or in other words, how accurately the brain activity can be measured
with respect to time.

To decide which method is best for controlling a robot, cost, portability and temporal
resolution of each method is compared. See table 1.1 for details. For real-time robot
controlling, lower temporal resolution is better because it enables faster decision making.

Price from Portable Temporal resolution Special requirements
MEG millions2 no milliseconds [13] magnetically shielded room
fMRI $150,000 3 no about 1 second [13] magnetically shielded room
PET $125,000 4 no about 1 second [13] radioactive isotopes injection

fNIRS $10,000 [38] yes over 0.1 second [38]
EEG $45 5 yes milliseconds [13]

Table 1.1: Comparison of functional neuroimaging methods.

In this thesis, techniques that are portable and available to the consumer are preferred,
so the usage would not be limited to certain location and would be available to the people
in need. Considering all these arguments, it can be seen that currently the best choice
for controlling a robot is an EEG device.

1.3 Overview of electroencephalography

As already mentioned in the previous section, EEG measures the electrical activity along
the scalp. This electrical activity originates mainly from the electric fields generated by
neurons as discussed in section 1.1. The aim of this section is to describe the basics of
EEG and discuss how brain activity evoked by certain event can be measured using EEG.

The electric potential generated by one neuron is far too low to be recognized. There-
fore, approximately 108 neurons have to have synchronous electrical activity to create a
measurable field [33]. Furthermore, these neurons have to have certain orientation for
the electric fields to add up and reach the electrode on the scalp. Namely, these neurons
need to be perpendicular to the surface of the brain as shown in figure 1.2a.

EEG measures the potential fields as a function of voltage versus time using electrodes
placed on scalp [33]. Since voltage is the electric potential difference between two points,
one or more reference electrodes are commonly used. A voltmeter can be used to measure
the difference in electric potential between two electrodes, one of which is the reference
electrode. See figure 1.3 for a simplified scheme.

2http://neurogadget.com/2012/12/15/inexpensive-magnetoencephalography-meg-system-could-be-
available-at-every-hospital/6495

3http://info.blockimaging.com/bid/92623/MRI-Machine-Cost-and-Price-Guide
4http://info.blockimaging.com/bid/68875/How-Much-Does-a-PET-CT-Scanner-Cost
5http://en.wikipedia.org/wiki/Comparison of consumer brain-computer interfaces
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Figure 1.3: Electrodes connected to a voltmeter [26, p. 120].

Usually electrodes are placed on the scalp according to international 10-20 electrode
location system. The outer layer of the brain can be classified into four lobes: temporal,
occipital, parietal and frontal. See figure 1.4a for example. The mentioned 10-20 electrode
location system uses a letter and a number to identify electrode location. The letter is
the first letter of the brain lobe above which the electrode is located and therefore the
electrode measures the activity of this brain lobe. There are more complicated electrode-
naming-systems that extend the 10-20 system. See figure 1.6 for example.

In a broad sense, EEG recording is linked to the general state of the brain [48]. Due to
the generality of the recording, potentials evoked by certain events cannot be seen in the
recording because the evoked potentials are much smaller than the general fluctuations.
A brain potential evoked by some event is called event-related potential (ERP).

ERPs are linked to the information flow in the brain and are usually recorded by using an
averaging technique [26]. For example, ERPs can be recorded by presenting a stimulus
with a certain time interval to a subject and calculating the average of EEG signals
recorded in the same time interval. This technique can be used for example if the stimulus
is presented at a constant rate and ERPs are also evoked one after another in the same
constant interval. As a result, ERPs are always evoked at certain time while other
fluctuations and noise are random. Therefore, when calculating the average of the EEG
recordings divided into the same time intervals as the stimulus presentation, the result
will be an ERP because other fluctuations and noise mostly cancel out in the averaging
process. Thus EEG can be used to record ERPs from the scalp.

1.4 Measuring visual evoked potentials

In section 1.3 brain potential called ERP was discussed and it was noted that ERPs are
evoked by some events. The aim of this section is to describe an ERP called visual evoked
potential (VEP) and discuss how VEPs can be measured. As the name suggests, VEPs
are elicited by visual stimuli. The visual stimulus for eliciting a VEP can be very simple,
for example a white square blinking on a black computer screen.

When the visual stimulus is seen, the signal travels from the eyes to the visual processing
centre through the primary visual pathway in the brain [37]. The visual processing centre
is located in the back of the brain. As mentioned in section 1.3, the outer layer of the
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brain can be classified into four lobes. The visual processing centre is located in the
occipital lobe. See figure 1.4 for illustration. The primary visual pathway is a neural
pathway; neural pathways were also mentioned in the section 1.1.

(a) Lobes of the brain [6]. (b) The primary visual pathway [37, p. 261].

Figure 1.4: The neural pathway from eyes to the occipital lobe.

Due to the posterior location of the occipital lobe, electrodes should be placed to the back
of the head when recording VEPs with EEG. These electrode locations are identified with
the letter O as discussed in section 1.3.

When comparing the VEPs elicited by the stimulation of the central visual field and
the stimulation of the peripheral vision by the same stimuli, it can be seen that the
stimulation of the central visual field produces larger VEPs [21]. In other words, the
stimulus that a subject is looking at elicits larger VEPs than those stimuli that are not
in the very centre of the gaze. Therefore, it is possible to present multiple visual stimuli
to a subject and detect which stimulus is the subject looking at.

To make the detection of VEPs easier, steady-state visual evoked potentials (SSVEPs)
are used. If the visual stimulus is presented at a constant rate and the rate is so fast
that the visual pathway does not have enough time to fully recover between stimulus
presentations, then the elicited response becomes continuous and it is called SSVEP [48].
See figure 1.5 for an example of VEPs and SSVEPs.

Figure 1.5: VEPs and SSVEPs elicited by stimuli with different frequencies [48, p. 259].

An SSVEP is composed of VEPs that are elicited one after another in a certain rate.
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An SSVEP is continuous and therefore it is easier to detect it in the EEG recording
than VEPs, which are not continuous. Detecting continuous response is easier and more
efficient because it is always present in the recording. Thus usually SSVEPs are elicited
instead of VEPs when the goal is to efficiently communicate with external device through
brain responses to visual stimuli.

1.5 Choosing neuroimaging device

In section 1.2 different functional neuroimaging methods were compared and it was con-
cluded that currently EEG is most suitable for designing inexpensive and portable inter-
face for controlling a robot. But there is a wide variety of EEG devices available. The
aim of this section is to compare some of the devices and choose a user-friendly device
that is available to the consumer.

A continuous signal cannot be directly represented in computers or in other digital devices
and therefore a continuous signal has to be converted to a digital signal to process it with
a computer. A digital signal can be acquired from continuous signal by measuring values
of continuous signal at a constant rate.

As already mentioned in section 1.3, EEG measures brain activity as a function of voltage
versus time. This function represents digital signal, which means that both voltage and
time are discrete. In other words, there is a finite set of possible values that the voltage
can have and these values are acquired one after another in a certain rate. This rate at
which digital values are extracted from a continuous signal is called sampling rate. The
device which converts continuous voltage to a sequence of discrete values is called analog-
to-digital converter (ADC) device. ADC resolution shows how many different values the
device can represent.

The table 1.2 shows a comparison of different EEG devices. Devices are compared by
price, the number of electrodes or channels, sampling rate and ADC resolution. The
higher the sampling rate, the more values are extracted in same time interval. The
higher the ADC resolution, the more different voltages the device can represent.

Price Channels Sampling rate ADC resolution
Mindwave6 $80 1 512 Hz 12 bit

Emotiv EPOC7 $400 14+2 128 Hz 16 bit
OpenBCI8 $450 8 adjustable 24 bit
Mitsar 2029 $10,500 10 31+1 2 kHz 24 bit
atiCHamp11 $77,100 160 25 kHZ 24 bit

Table 1.2: Comparison of EEG devices.

From the more consumer-friendly devices, Emotiv EPOC seems to offer good price-quality
relationship. Emotiv EPOC has 16 electrodes, two of which are reference electrodes.

6http://store.neurosky.com/products/mindwave-1
7https://emotiv.com/epoc.php
8http://openbci.myshopify.com/products/openbci-8-bit-board-kit
9http://www.mitsar-medical.com/eeg-machine/eeg-amplifier-compare/

10http://www.novatecheeg.com/products–software.html
11http://www.brainvision.com/files/actiCHamp-PyCorder-Flyer US.pdf
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Reference electrodes have two different possible locations: P3 and P4 or locations behind
the ears. Other electrodes have fixed locations: AF3, AF4, F3, F4, F7, F8, FC5, FC6,
P7, P8, T7, T8, O1, O2. See figure 1.6 for illustration. Emotiv EPOC has a sampling
rate of 128 Hz, an internal sampling rate of 2,048 Hz and an ADC resolution of 16 bit.
High internal sampling rate is used to remove high frequency artefacts from the signal.
The signal is filtered and then transmitted to wireless receiver with reduced sampling
rate of 128 Hz.

Figure 1.6: Electrode locations used by Emotiv EPOC12. Used locations are marked with
orange circle.

Research has shown that Emotiv EPOC performs significantly worse than a medical-grade
device [14]. But the performance of Emotiv EPOC is good enough to detect SSVEPs
in the recording [30, 53, 27, 24]. It has also been shown that it is possible to detect
SSVEPs in the Emotiv EPOC recording even when the subject is walking during the
recording, despite the artefacts that the movement produces [27]. Walking during the
recording session causes the device to move on subject’s head and this movement produces
artefacts. Thus the performance of Emotiv EPOC is sufficient for detecting SSVEPs and
it is chosen as an EEG device for controlling a robot in this thesis.

12http://emotiv.wikia.com/wiki/Emotiv EPOC

14



2 Implementing VEP-based brain-computer
interface

The previous chapter discussed the biology of the brain and described the brain potential
called SSVEP. The aim of this chapter is to describe which kind of visual stimuli can be
used to elicit an SSVEP and how to detect the elicited SSVEP in the EEG recording.
This knowledge is needed to extract information from the EEG recording and use this
information to control a robot. In other words, this chapter will discuss how to implement
a VEP-based brain-computer interface (BCI).

2.1 Designing visual stimuli

As discussed in section 1.4, it is possible to present multiple visual stimuli to a subject
and detect, which stimulus is the subject looking at. It was also mentioned that computer
monitor can be used to present visual stimuli. This section will discuss how stimuli with
certain blinking frequency can be displayed by a computer monitor.

Research has shown that LCD screens produce more reliable SSVEP response than light-
emitting diode (LED) [11]. Another study, however, concludes that BCIs that use LEDs
as visual stimuli have achieved better performance [52]. But since using LEDs requires
dedicated hardware, only the stimuli that can be displayed by a computer monitor are
discussed in this thesis.

A computer monitor has certain size, resolution and refresh rate. Monitor resolution and
size limit the size of the visual stimuli that can be used and the distance between the
stimuli on the screen. Monitor refresh rate, on the other hand, limits the presentation
rate or blinking frequency of the stimulus that can be used. Research has shown that
LCD screens produce more reliable SSVEP response when using monitor refresh rate for
measuring the time between stimuli presentations rather than a timer [11]. Therefore in
this thesis monitor refresh rate is used for timing and synchronisation.

Monitor refresh rate is the number of consecutive images or frames shown on the screen in
a second, assuming that the frames are produces at least as fast as they can be displayed.
A frame is one of the images that compose the changing picture on the screen. Monitor
with a refresh rate of 60 Hz can display 60 frames per second.

Often blinking one-coloured squares on one-coloured background are used as visual stimuli
in SSVEP-based BCIs [52]. The squares may have symbols on them, for example letters
or numbers. The stimuli of VEP-based BCI are also called targets and the blinking of a
target is called flickering .

In every frame each target can be in one of two states—displayed or not displayed. The
state of a target can be switched only when the current frame is replaced with the next
frame. The state switches should be distributed as evenly as possible for the target
frequency to be constant. Distributing the state switches is easier with some frequencies
than others. For example, if refresh rate is 60 Hz, then the state switches for 10 Hz, 11 Hz
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and 12 Hz target should be distributed as follows:

• 10 Hz flickering can be achieved by presenting the target 60
10

= 6 times slower than
the refresh rate. This means, that the target has to be presented once in every 6
frames. Since 6 is an even number, 10 Hz flickering can be achieved by changing the
state of the target after every 6

2
= 3 frames. If this flickering is plotted as a function

of state versus time as in figure 2.1, it can be seen that it produces a square wave.
In this thesis, the waveform produced by plotting the flickering is called flickering
waveform.

• 12 Hz flickering can be achieved by presenting the target 60
12

= 5 times slower than
the refresh rate. The target has to be presented once in every 5 frames. Since 5 is an
odd number, the amount of time the target is in displayed state and in not displayed
state cannot be equal. Therefore, the target should be 3 frames in displayed state
and 2 frames in not displayed state or the other way round. If representing this
flickering as a flickering waveform as in figure 2.1, it can be seen that it produces a
rectangular wave.

• 11 Hz flickering can be achieved by presenting the target 60
11

≈ 5.45 times slower
than the refresh rate. This means, that the target has to be presented once in every
5.45 frames. Since 5.45 is not a natural number, the flickering will be irregular.
11 Hz target flickering from the paper by Wang et al. [43] is used as an example in
figure 2.1. Although 11 Hz frequency produces irregular flickering, it is still possible
to detect SSVEP elicited by it in the Emotiv EPOC recording [30].

10 Hz ideal

10 Hz adjusted

11 Hz ideal

11 Hz adjusted

12 Hz ideal

12 Hz adjusted

Figure 2.1: Adjusting target flickering to 60 Hz refresh rate. The black line represents
the flickering as state versus time. The states are displayed and not displayed. Vertical
grid lines represent frame changes. There are 60 vertical grid lines and thus this figure
shows the state changes of targets with different frequencies in one second.

A duty cycle is used to characterise a rectangular wave. Duty cycle is the percentage
of the amount of time the target is in displayed state in one period. If the target is in
displayed state for 2 frames and in not displayed state for 3 frames in one period, then
the duty cycle of the rectangular wave is 2

2+3
·100% = 40%. Square wave has a duty cycle

of 50%. Research has shown that the SSVEP elicited by a square wave flickering can be
more accurately detected than those elicited by a rectangular wave flickering [52].
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The previous discussion was about blinking shapes or single graphic stimuli. There is
another type of SSVEP stimuli called pattern reversal stimuli that can also be displayed on
a computer screen. Pattern reversal stimuli is rendered by changing between two different
patterns, for example alternating the colours of a chequerboard [52]. See figure 2.2 for
an example of single graphic and pattern reversal stimuli.

(a) The states of a single graphic stimulus. (b) The states of a pattern reversal stimulus.

Figure 2.2: Different types of visual stimuli. A stimulus alternates between the two given
states.

The main difference between single graphic stimuli and pattern reversal stimuli is that
single graphic stimuli elicits SSVEP response after every two alterations, while pattern
reversal stimuli elicits SSVEP response after every alteration [52]. The fastest possible
target frequency can be achieved by changing between the states of a target every time
a new frame is displayed. If the state is changed at lower rate, the target frequency will
also be lower. Target frequency can be calculated as follows:

fsingle graphic =
n

2T
fpattern reversal =

n

T
(2.1)

where T is the period of the flickering waveform, n is the number of times the target state
is switched in a time period of T and f is the flickering frequency.

A computer monitor can be used to present visual stimuli to a subject and the refresh
rate of the monitor should be used for measuring the time between stimuli presentations.
Adjusting target flickering to the rate at which the frames are changed can produce differ-
ent flickering waveforms for different flickering frequencies. Since the flickering waveforms
are different, the SSVEP responses are also different.

2.2 Overview of Fourier analysis

As discussed in the previous section, the flickering of a target can produce different
waveforms. This section will discuss how these waveforms and other signals can be
represented by sums of simpler trigonometric functions. The study of this decomposition
process is called Fourier analysis, named after Joseph Fourier, whose insight to model all
functions by trigonometric series was a breakthrough in the field in 1807.

The following paragraph is based on the book by Hartmann [18]. The simpler trigono-
metric functions that a signal is decomposed into are pure tones—the waveforms that
contain only one frequency. All other waveforms contain at least two frequencies. Pure
tone waveforms are sine and cosine waves. Important property of a pure tone is that
linear operations do not change the shape of the pure tone waveform. See figure 2.3 for
an example of a pure tone.
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The pure tones are used to represent all possible frequencies that a signal may contain.
The decomposition process of a signal is called Fourier transform and it is used to de-
compose a function of time into pure tones or frequency components that make it up.
The function of time can be for example the EEG recording represented as voltage versus
time or the target flickering represented as state versus time. Fourier transform converts
signal from time domain or the function of time to frequency domain or the function of
frequency. The representation of a time-domain signal in a frequency domain is called fre-
quency spectrum. Frequency spectrum contains information about amplitude and phase
of different frequency components. Therefore, frequency spectrum can be presented as a
function of frequency versus amplitude and phase.
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Figure 2.3: A sine wave in time domain (A) and its frequency components’ ampli-
tudes (B). Theoretically pure tone has only one frequency, but since the signal in time
domain is digital, it is an approximation of the actual pure tone and therefore the repre-
sentation of frequency components’ amplitudes is not perfect.

To represent both amplitude and phase, complex numbers are used. The amplitude and
phase do not correspond to the real and imaginary part of the complex number but rather
are related to the absolute value or the modulus and the phase of the complex number.
In this thesis the phase information from the frequency spectrum is not used. There
are, however, BCIs that also use the phase information [40]. Since only the information
about amplitude is required in this thesis, it is possible to convert the frequency spectrum
into power spectral density , which can be represented as a function of amplitude squared
versus frequency.

To conclude previous discussion, the amount of frequency f present in a signal can be
calculated by first calculating the frequency spectrum with Fourier transform and then
taking modulus squared of the frequency spectrum’s value at frequency f .

In digital devices, however, theoretical power spectral density cannot be calculated. The
measurement period would have to be infinitely long to a acquire the true power spectral
density [8]. Therefore, spectral estimation is used. The modulus squared of frequency
spectrum in a real-world application is called periodogram and it is the estimation of the
power spectral density. There are other spectral estimation methods available.

Since digital devices work with digital signals as discussed in section 1.5, in a real-world
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application discrete version of the Fourier transform is used. The algorithm used to com-
pute the discrete Fourier transform is called fast Fourier transform (FFT). The frequency
spectrum calculated by FFT is discrete—if the digital real-valued input signal, as is the
case with EEG recording, has N values then the output has the integer part of N

2
values.

This derives from the definition and symmetric property of the discrete Fourier transform.

The signal that is recorded, however, may contain frequencies that are too high to be
detected from the digital signal. Theoretically, the sampling rate of the device has to be
more than two times higher than the highest frequency in the signal to reconstruct the
continuous signal from the recorded digital signal and also to decompose the signal into
frequency components. The highest frequency that can be detected with a sampling rate
of f is 2

f
and it is called Nyguist frequency . But since real-world application are imperfect,

even higher sampling rate is needed. For example, as discussed in section 1.5, Emotiv
EPOC has internal sampling rate of 2,048 Hz to more accurately record frequencies up
to its Nyguist frequency of 128Hz

2
= 64 Hz, since the actual sampling rate is 128 Hz.

To conclude previous discussion, the frequency spectrum calculated by FFT from real-
valued time-domain signal with N values is defined at frequencies 1

N
, 2
N
, . . . f/2

N
. These

frequencies are also called frequency bins . The length of a frequency spectrum depends
on the length of the signal from which it is calculated. The longer the input signal, the
more frequency bins will be acquired.

Thus a time-domain signal can be decomposed into pure tones or sine and cosine waves
using FFT. FFT calculates the frequency spectrum of a time-domain signal. Frequency
spectrum can be converted to the estimation of power spectral density which contains only
the information about the amplitudes of the pure tones. Analysing the power spectral
density can be used to detect SSVEPs in an EEG recording.

2.3 Decomposing target flickering

This section will focus on the decomposition of the flickering waveforms, which were
described in section 2.1. The decomposition process was discussed in section 2.2. As dis-
cussed in previous section, only sine and cosine waves are composed of a single frequency.
Other waveforms have more frequency components.

The frequency component of a signal that has the lowest frequency among all the fre-
quency components of the signal is called fundamental or the first harmonic of the signal.
Harmonic of a signal is a frequency component with frequency that is an integer multiple
of the fundamental frequency of the signal. If the fundamental frequency is f , then first,
second are third harmonics have frequencies of 1f , 2f , 3f respectively.

It can be shown that a square wave is composed of its odd harmonics. If the flickering
waveform is a square wave or a rectangular wave, the fundamental frequency of the
waveform is the frequency of the stimuli presentation. Therefore, a square wave with
fundamental frequency f can be represented as a sum of sine waves

square(t) =
∞∑

n=1,3,5,...

1

n
sin(2πnft) (2.2)

where square(t) is the flickering represented as state versus time, 1
n

is the amplitude of a
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frequency component and f is the fundamental frequency of the waveform. See figure 2.4
for an example of a square wave, three of its harmonics and their amplitude spectrum. It
can be seen that the fundamental of the square wave has the highest amplitude among its
frequency components. Rectangular wave’s frequency components depend on the duty
cycle of the wave. But as is the case with square waves, the fundamental has the highest
amplitude also in a rectangular wave.
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Figure 2.4: A square wave in time domain (A), its first harmonic (blue), the sum of its
first two harmonics (green) and the sum of its first three harmonics (red). The amplitude
spectrum (B) shows the amplitudes of the same signals with the same colour-coding.
Please note that the green signal also contains the blue signal, the red signal contains
both blue and green signal and black signal contains all the previous signals. In general,
every next signal in amplitude spectrum also contains the previous signals.

Unfortunately, the SSVEP response to target flickering does not contain only the frequen-
cies that are present in the frequency components of the flickering waveform—SSVEP
contains other frequencies too. However, the frequencies that are present in the fre-
quency components of the flickering waveform are more successfully elicited in SSVEP
response [39].

Generally an SSVEP contains frequency components with frequencies that are integer
multiples of the flickering frequency [20]. Therefore, target frequencies should be chosen
so that neither of these frequencies is an integer multiple of the other. Otherwise it
might not be distinguishable which target flickering elicits which frequency in the SSVEP
response. For example, if 6 Hz and 12 Hz Hz flickering frequencies are both used, then 6 Hz
flickering also elicits 12 Hz frequency in the SSVEP since 12 Hz is the second harmonic
of 6 Hz flickering and thus it might not be possible to distinguish this 12 Hz component
from the 12 Hz component elicited by 12 Hz flickering.

It has even been reported that SSVEP contains frequency components that have lower
frequency than the fundamental of the flickering waveform [20]. These frequency compo-
nents have frequency of f

n
, where f is the fundamental frequency of the flickering waveform

and n is a natural number. But since these components have very small amplitudes, these
components are not used in SSVEP-based BCIs.

An SSVEP reflects certain properties of the visual stimulus. The frequencies that are
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present in the flickering waveform are likely to be found also in the SSVEP response,
but other frequency components are present in the SSVEP too [39]. It is sufficient to
detect only the frequency component with the same frequency as the target flickering
in a SSVEP-based BCI, but to improve the performance of the BCI other frequency
components should be detected too [31].

2.4 Evaluating the performance of a brain-computer

interface

The most commonly used method for evaluating the performance of a BCI is called
information transfer rate (ITR) [47]. ITR was defined by Wolpaw et al. [44] in 1998

B = log2N + P log2 P + (1 − P ) log2[(1 − P )/(N − 1)] (2.3)

where B is the ITR in units of bits per trial or bits per command, N is the number of
targets and P is the accuracy or the probability that the user’s choice is actually selected.
To make the units of ITR more understandable, ITR is calculated in units of bits per
minute [44]

Bt = B · (
60

T
) (2.4)

where Bt is the ITR, B is calculated with equation 2.3 and T is the time needed to
identify a chosen command.

There are, however, preconditions that have to be fulfilled in order to calculate correct
ITR with the previously given equations. These preconditions are the following: BCI
is memoryless, all commands are equally likely to be chosen, the accuracy of choosing
a target is the same for every target and in case of choosing a wrong target, all wrong
targets are equally likely to be chosen [47].

If these preconditions are met, the ITR of a BCI can be calculated using equation 2.4.
Using the same evaluation method allows the performance of different BCIs to be easily
compared.

2.5 Improving the accuracy of a spectrum with

signal processing

The aim of this section is to describe some digital signal processing techniques that
can improve the performance of a SSVEP-based BCI by improving the accuracy of an
amplitude spectrum or power spectral density.

2.5.1 Detrending the signal

A linear trend or steady increase or decrease of values in an EEG recording can make the
detection of SSVEPs less accurate. As discussed in section 2.2, Fourier transform is used
to decompose a signal into frequency components. If the signal has a trend, the trend
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will also be decomposed. The decomposed trend will not provide any useful information
and it makes detecting the actual SSVEP less accurate. A comparison of amplitudes
acquired from a signal with trend and from the same signal without trend can be seen in
figure 2.5.
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Figure 2.5: A signal with trend (blue) and the same signal without trend (green) in
time domain (A). The amplitude spectrum (B) shows the amplitudes of the frequency
components of the same signals with the same colour-coding. The plots in the second
row show the trends of the signals in time domain (C) and the amplitude spectrums of
these trends (D). The green signal in time domain does not have a trend so its trend is
presented as a constantly zero function.

Removing trend from a signal is called detrending . The average value or the mean of
a detrended signal is zero. The detrending also works if there is no steady increase or
decrease of values in the signal. In this case, just a constant value—the mean of the
signal—is subtracted from all the values of the digital signal and as a result, the mean
of the signal will be zero. Subtracting a constant value from the signal does not change
the amplitudes of the frequency components of the signal and it does not add additional
frequency components.

A linear trend can also be removed from the signal in segments—this means that the
signal is divided into equal length segments and trend is removed from every segment
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separately. This is useful if the trend changes in the signal. Detrending a signal does
not decrease but can increase the accuracy of detecting SSVEPs. Therefore the EEG
recording should be detrended before performing FFT.

2.5.2 Windowing the signal

When estimating the power spectral density of a signal using FFT, it has to be decided
how many values will be recorded before performing FFT on the acquired samples or in
other words, how long window will be used. This means that the signal is divided into
segments or in a sense the signal will be looked at through a window. Window function
is a function that has non-zero values in a certain range and its value is zero outside
that range. Windowing means that a signal is multiplied with a window function. The
multiplication is element-wise

(w · s)(x) = w(x) · s(x) (2.5)

where s is signal segment ans w is window function.

The non-zero values of a window function usually increase until the centre of the range,
at the centre there is the highest value and then the values start decreasing again until
the end of the range. See figure 2.6 for an example of hanning window. The general
purpose of multiplying a signal with a window function is to smooth the start and the
end of the signal. If the recorded signal has a clear periodic component but the signal is
divided into segments so that one segment does not contain exactly integer multiple of
periods of the component, then phenomena called spectral leakage will happen. Spectral
leakage means that some of the power of the periodic component will be distributed over
other frequency bins and thus the correct frequency bin will have less power and incorrect
frequency bins will have more power. Smoothing the start and the end of a signal is used
to minimise the spectral leakage.
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Figure 2.6: Hanning window in time domain (A) and its amplitude spectrum (B).

Multiplying a signal with a window function requires the signal to have zero mean. Oth-
erwise some unwanted components will appear in the estimated power spectral density.
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If multiplying the signal s(x) that can be presented as a sum of detrended signal z(x)
and the trend t(x) with window w(x), then

(w · s)(x) = w(x) · (z(x) + t(x)) = w(x) · z(x) + w(x) · t(x) (2.6)

It can be seen that if the trend t(x) is not constantly zero, then windowing adds a com-
ponent w(x) · t(x) to the signal in addition to changing the amplitudes of the components
of z(x). If t(x) is constantly zero, then the signal has zero mean and no additional com-
ponent is added. Therefore, signals with non-zero mean or trend should be detrended
before windowing. Another thing to keep in mind is that windowing a signal makes the
peaks in the power spectral density wider. See figure 2.7 for an example of sine waves
with zero mean and non-zero mean windowed with hanning window and a comparison of
amplitudes acquired from actual signal and windowed signal.
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Figure 2.7: A signal with zero mean (blue) and the same signal multiplied with window
function (green) in time domain (A). The amplitude spectrum (B) shows the amplitudes
of the frequency components of the same signals with the same colour-coding. Plots in
the second row show the same information for a signal with non-zero mean.

The longer the window, the more values will be acquired and the estimated power spectral
density will be closer to the actual power spectral density [8]. This was already briefly
mentioned in section 2.2. However, to control a robot it is necessary for the BCI to
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detect SSVEPs as fast as possible and therefore the window length should be as short
as possible. Thus, choosing the right window length is important in designing a fast and
accurate BCI.

2.5.3 Zero padding the signal and approximating unknown
values

Another problem that occurs when analysing power spectral density is that the power
spectral density of a digital signal is discrete and therefore it might not have frequency
bins at the exact values of interest. For example, if designing a BCI, the frequencies of
interest are the targets frequencies or integer multiples of the targets frequencies, because
these are the frequency components of SSVEP as discussed in section 2.3.

Interpolation can be used to approximate the value between frequency bins to calculate
the power of a frequency that does not correspond to any frequency bin. In general,
interpolation is used to construct a digital signal between its discrete values or in other
words to approximate the continuous signal from which the discrete values were extracted
from. Therefore, interpolation can also be used to approximate the EEG recording if some
of the values are lost in the process of sending values from the recording device to the
computer.

In the paper by Hakvoort et al. [17], linear interpolation was used to approximate the
amplitude of frequencies that did not correspond to any frequency bin. However, lin-
ear interpolation is not the best option to estimate peaks in power spectral density.
In figure 2.8 there is a comparison of amplitude estimation of linear interpolation and
barycentric interpolation.
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Figure 2.8: A signal in time domain (A) and its amplitude spectrum (B). The amplitude
spectrum shows the comparison of the amplitude approximation of 1.85 Hz frequency
component using linear interpolation (red) and barycentric interpolation (green).

Another possibility to solve the lack of frequency bins problem is to use zero padding .
Zero padding means that zeros are added to the end of the signal before performing FFT.
This results in more frequency bins in the power spectral density, because the number of
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frequency bins depends on the length of the input signal as discussed in section 2.2. The
only alteration in power spectral density is that it has more frequency bins if calculated
from a zero-padded signal. The comparison of amplitudes acquired from a signal and
from the same signal with zero padding can be seen in figure 2.9. Multiplying a signal
with a window function before zero padding results in a smoother transition between the
signal and its zero padding.
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Figure 2.9: A signal in time domain (A) and the same signal zero padded (C). Plots in
the second column show the amplitude spectra of the corresponding signals in the first
column.

To sum up, the signal should be windowed or in other words multiplied with a window be-
fore zero padding. Windowing a signal requires the signal to have zero mean as discussed
in the previous section and therefore the signal should be detrended before windowing.
Thus the correct order of using signal processing techniques described in this chapter is:
interpolating to approximate lost packets or digital signal values, detrending, windowing,
zero padding and then interpolating to approximate values between frequency bins.
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2.6 SSVEP-based BCI feature extraction methods

The aim of this section is to describe two methods used for detecting SSVEPs in an EEG
recording. These methods are called feature extraction methods. This section describes
the PSDA and CCA feature extraction methods. These are the methods used in chapter 3
to design an application for controlling a robot.

2.6.1 Power spectral density analysis method

This section describes SSVEP-based BCI feature extraction method called PSDA. PSDA
is widely used in SSVEP-based BCIs [5]. This method is based on a power spectral
density estimation; one of the estimation methods called periodogram was discussed in
section 2.2.

There are different ways how to use the power spectral density estimation for feature
extraction. Some BCIs use peak finding to find highest values in the power spectral
density [28]. Other BCIs use a training session to find a threshold value that certain
frequency’s amplitude or power has to exceed in order to select the target with corre-
sponding frequency as user’s choice. This method requires a training session during which
the threshold values are determined, but SSVEP-based BCIs could be implemented with-
out the need for a training session. Threshold values, however, can be used together with
other methods.

BCIs that use PSDA feature extraction usually calculate signal-to-noise ratio (SNR) or
other values that are related to SNR of each target and then select the target with the
highest SNR or related value as user’s choice. For example, the ratio of frequency’s power
to the mean of adjacent frequency bins can be calculated to select user’s choice [4]

SNR(fk) =
2P (fk)

P (fk+1) + P (fk−1)
(2.7)

where P is the function representing power spectral density and f1, . . . , fk, . . . , fm are the
frequency bins of the periodogram in increasing order. The SNR as defined in equation 2.7
can be calculated for every target frequency and the target that has the frequency with
highest SNR is assumed to be the user’s choice. This works because SSVEP has a
component with the same frequency as the target frequency as discussed in section 2.3.

More than two adjacent frequency bins can be used to calculate the SNR [46]. Therefore,
the equation 2.7 can be generalised

SNR(fk) =
nP (fk)∑n/2

i=1

(
P (fk−i) + P (fk+i)

) (2.8)

where n is the number of adjacent frequency bins used. To generalise the equation even
more, the ratio of the frequency’s power to the whole power spectral density or all the
frequency bins can be calculated

SNR(fk) =
P (fk)∑
i P (fi)

(2.9)

It is also possible to just compare the powers of different target frequencies and select
the target with highest power [17]. This is equivalent to using equation 2.9.
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All these methods can use in addition to the target frequency also its integer multiples
to improve the performance of the BCI, as mentioned in section 2.3. In this case the sum
of the SNRs can be used

h∑
i=1

SNR(ifk) (2.10)

where h is the number of integer multiples used. Often three integer multiples are used.
After calculating the SNR for all the target frequencies and for their integer multiples if
necessary, the target with highest SNR or the highest sum of SNRs can be selected as
user’s choice.

To design a SSVEP-based BCI that uses PSDA feature extraction method it is enough
to use one of the methods described in this section. Often SNRs or just the powers of
different targets are compared to determine the user’s choice.

2.6.2 Canonical correlation analysis method

CCA was first introduced by Harold Hotelling in 1936 [22]. In 2001, CCA was used to
introduce a novel method for detecting neural activity in fMRI data [15]. Likewise, CCA
was introduced to EEG recording analysis for the first time in 2007 by Lin et al. [28].
This section gives necessary background information and describes the method proposed
by Lin et al.

Overview of basic statistics

Mathematically EEG recordings can be modelled using random variables. This inter-
pretation is necessary to make mathematical statements about the calculated statistics ,
such as the mean and covariance. One specific EEG recording can be viewed as a data
sample or a set of data collected from the continuous signal. Therefore, EEG recording
can be represented as a sequence of recorded values x = (x1, x2, x3, . . . , xn).

As was the case with power spectral density, the statistics calculated from a data sample
are not the exact parameters for the whole EEG signal. Statistics are used to estimate
the theoretical values. The sample mean of a data set, for example of an EEG recording
can be calculated with

m(x) =
1

n

n∑
i=1

xi (2.11)

To measure the similarity of two EEG recordings, sample covariance can be used. Sample
covariance measures how much two data sets change similarly. For two EEG recordings
x = (x1, . . . , xn) and y = (y1, . . . , yn) the sample covariance is

q(x,y) =
1

n− 1

n∑
i=1

(xi −m(x))(yi −m(y)) (2.12)

The addend (xi−m(x))(yi−m(y)) in the equation 2.12 is positive, if both signals change
similarly at the corresponding time point or in other words, if both signals are above or
below their means at the same time. The addend is negative, if the signals change in the
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opposite way or in other words, if one signal is above its mean and the other is below its
mean.

Sample covariance can be normalised so that the result will be between 1 and -1. Nor-
malised covariance is called sample correlation. Sample correlation can be calculated
with

r(x,y) =
q(x,y)√

q(x,x)q(y,y)
(2.13)

There is somewhat different correlation defined for time-domain signals, called cross-
correlation. Cross-correlation takes also into account the possible shift in time between
the signals. For example, the correlation of sine and cosine calculated with equation 2.13 is
0, which means that according to equation 2.13 sine and cosine are uncorrelated despite
the fact that sine and cosine waves are actually very similar. Cross-correlation is the
function of the measure of similarity versus time lag between the signals

(x ? y)(t) =
∑
i

xiyi+t (2.14)

The equations 2.13 and 2.14 can be used to measure the similarity between two EEG
recordings. Measuring the similarity between two signals can be used as feature extraction
method called template matching . The template matching method requires a training
session to acquire templates that can be later compared to EEG recording when a subject
is using the BCI. Each template shows the state of the brain when the subject is watching
certain target. If the template acquired during training session and the current recording
are similar enough, the target corresponding to the matching template will be selected.

Designing reference signals

CCA method does not use templates as discussed in the previous section. CCA method
uses sine and cosine waves as reference signals instead of templates in SSVEP-based BCIs.
CCA is a statistical method used to measure the similarity between two sets of signals or
two sets of data samples. Therefore, CCA can be used to measure the similarity between
multichannel EEG recording and multiple reference signals. In contrast, the equation 2.13
can be used to measure the similarity between only two signals or two data samples.

In SSVEP-based BCIs one set of data is the multichannel EEG recording. For example, if
recording data with electrodes located in O1 and O2, the recorded data can be represented
as a vector of vectors X = (xO1,xO2). The second set of data contains pure tones, each
of which has a frequency of integer multiple of a target frequency. There is different set
of reference signals for every target, because targets have different frequencies. Both sine
and cosine waves are used in the second data set

Y =


ysin1(t)
ycos1(t)
ysin2(t)
ycos2(t)
ysin3(t)
ycos3(t)

 =


sin(2π1ft)
cos(2π1ft)
sin(2π2ft)
cos(2π2ft)
sin(2π3ft)
cos(2π3ft)

 (2.15)

In the method proposed by Lin et al. [28] three integer multiples are used as in equa-
tion 2.15. The reason why both sine and cosine waves are used is that the phases of the
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SSVEP components are not known. As already mentioned in the previous section, sine
and cosine waves are uncorrelated according to equation 2.13. Using both sine and cosine
waves as reference signals gives optimal minimum correlation of 1√

2
between a reference

signal and an ideal SSVEP component.

The optimal minimum correlation means that if SSVEP component with the same fre-
quency and amplitude as a reference signal but with different phase is compared to
both sine and cosine reference, then the maximum of the absolute values of these two
correlations will be no less than 1√

2
≈ 0.707. This can be seen when calculating the cross-

correlation of the SSVEP component with both signals and taking the absolute value of
the resulting values. This is illustrated in figure 2.10.

It is possible to take the absolute value of the correlations because CCA treats correlation
and anticorrelation or positive and negative correlation similarly. The cross-correlations
will be similar to the one presented in figure 2.10 if the signal has different frequency than
the reference signals, but in this case the cross-correlations will have smaller amplitude.
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Figure 2.10: A signal (red) and sine (blue) and cosine (green) reference signals in time
domain (A). The second plot (B) shows the absolute value of the cross-correlation of the
signal with sine wave (blue) and cosine wave (green).

Thus if there is SSVEP component that corresponds to target frequency or its integer
multiple, then there is positive correlation between the SSVEP component and at least
one of the reference signals.

Comparing two sets of signals

The covariance between two sets of data samples X = (x1, . . .xn) and Y = (y1, . . . ,ym)
can be calculated by summing up the covariances of all the possible combinations of two
data samples

q(X,Y) =
n∑

i=1

m∑
j=1

q(xi,yj) (2.16)

where q(xi,yj) is calculated using the equation 2.12.
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The canonical correlation, however, is not just the correlation between two sets of data
samples, but the correlation between a linear combination of one set and a linear combi-
nation of the other set of data samples. Linear combinations of X and Y are

U = a1x1 + a2x2 + a3x3 + · · · + anxn

V = b1y1 + b2y2 + b3y3 + · · · + bmym

CCA seeks linear combinations U and V that have the maximum correlation among all
the possible linear combinations of X and Y. Since x1, . . .xn and y1, . . . ,ym are known,
CCA needs to find sets of coefficients a1, a1, . . . , an and b1, b2, . . . , bm. Similarly to the
equation 2.13, the correlation between linear combinations U and V can be calculated
with

ρ =
q(U,V)√

q(U,U)q(V,V)
(2.17)

This correlation is called canonical correlation. The pair (U,V) is called the first pair of
canonical variates. It is possible to find up to min(m,n) pairs of canonical variates, but
in the method proposed by Lin et al. [28] only the first pair of canonical variates is used.

The canonical correlation between the EEG recording and every set of reference signals is
calculated in CCA method. Every target has different set of reference signals as already
mentioned in the previous section and therefore target whose set of reference signals has
the highest canonical correlation with EEG recording will be selected as user’s choice.
See figure 2.11 for graphical illustration.

Figure 2.11: The visualisation of the steps of CCA feature extraction method [5].

These two feature extraction methods described in this chapter can be used as separate
feature extraction methods, but in the application described in chapter 3, these two
methods complement each other and in a sense work as a single feature extraction method.

2.7 Related work

There are many types of BCIs available. A review by Bashashati et al. [3] contains a
detailed overview of EEG-based BCIs. Their paper includes overview of the following
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neuromechanisms used in EEG-based BCIs: VEP and SSVEP, P300, slow cortical po-
tential, response to mental task, sensorimotor activity, and multiple neuromechanisms
or hybrid BCI. Hybrid BCI uses at least two different neuromechanisms in a BCI and
therefore at least two different methods are required to analyse the EEG recording [1, 19].

SSVEP-based BCIs can be divided in categories according to the method used to de-
tect SSVEPs in EEG recording. Current SSVEP-based BCI feature extraction methods
include:

• PSDA method introduced by Cheng et al. [12].

• Stability coefficient (SC) method introduced by Wu and Yao [45].

• Dual-frequency SSVEP methods [32, 25].

• Multi-phase cycle coding (MPCC) method introduced by Tong et al. [40].

• Minimum energy combination (MEC) method introduced by Friman et al. [16].
This method has shown better performance than SC and PSDA method [42].

• CCA method introduced by Lin et al. [28]. This method has shown better perfor-
mance than PSDA method [17, 5, 28].

• Multiway CCA method introduced by Zhang et al. [51]. This method has shown
better performance than standard CCA [51].

• Least absolute shrinkage and selection operator (LASSO) method introduced by
Zhang et al. [50]. This method has shown better performance than CCA method [50].

• Likelihood ratio test (LRT) method introduced by Zhang et al. [49]. This method
has shown better performance than CCA method and similar performance to LASSO
method [49].

For more comprehensive review of the feature extraction methods see article by Liu et
al. [29].

In this thesis Emotiv EPOC is used to record brain activity and the recording is analysed
using PSDA and CCA feature extraction methods. Table 2.1 gives overview of the existing
BCIs that also use Emotiv EPOC for recording brain activity.

Method Accuracy (%) Target detection ITR (bits/min)
time (sec)

Liu et al. [30] CCA 95.83 ± 3.59 5.25 ± 2.14 20.97 ± 0.37
Lin et al. [27] CCA 76.60 ± 21.74 4.34 ± 0.08 14.38 ± 9.04

CCA 84.4 ± 5.0 N/A 11.6 ± 3.9
Choi and Jo [7] ERD 84.6 ± 5.3 N/A 11.8 ± 3.7

P300 89.5 5.35 18.1 ± 2.1
Hvaring and CCA 85.12 ± 4.58 3.00 32.92 ± 4.72

Ulltveit-Moe [24] PSDA 89.29 ± 6.41 5.14 ± 0.98 23.78 ± 7.15

Table 2.1: Comparison of the existing BCIs that use Emotiv EPOC.
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It can be seen that existing applications have target detection time above or exactly
three seconds which is not fast enough to control a robot in real time. However, as
Zier mentioned in his paper [53] and as also noticed in the process of developing this
application, if the window length is long enough for the feature extraction method to
accurately detect correct target, the target detection time is about half the window length.
That is so, because after half the window length, half of the previous data is replaced
with new data and if there is more new data than previous, then the BCI recognises the
new user’s choice.

This thesis aims at developing BCI with faster target detection time than the previous
applications to provide suitable speed for controlling a robot.
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3 Application for controlling
a robot via SSVEP

The aim of this chapter is to describe the SSVEP-based BCI designed as a practical part
of this thesis. The BCI is written in Python 2.7 and the code is accessible from Github
repository, see appendix IV for details. The BCI requires only Emotiv EPOC headset
and a computer with Windows operating system, no specific hardware like digital signal
processors or LEDs are used.

3.1 Controlling a robot with the application

This section describes how the BCI can be used to control a robot. Each target in the
BCI can be used as one command for the robot. The robot can be controlled by looking
at different targets on the computer screen in certain sequence, depending on which
command should be given to the robot. Then the BCI tries to identify which target is
being looked at and translates the results into commands for the robot. The targets could
be designed for example as shown in figure 3.1.

Figure 3.1: Stimuli locations on the screen for controlling a robot. The picture in the
middle represents camera’s video stream.

The robot1 used for testing the application has five possible commands: move forward,
move backward, turn left, turn right and stop. The robot can execute one command at a

1https://github.com/kuz/Garage48-PiTank
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time, meaning that it is not possible to move forward and turn left or right at the same
time. If the robot is moving forward and receives a command to turn left, the moving
forward will stop and the robot starts to turn left. See figure 3.2 for a picture of the
robot used for testing the application.

Figure 3.2: The robot used for testing the application.

The robot has a camera on it and thus it is possible to see the camera’s videos stream
on the computer screen when controlling the robot with the application. The picture in
the middle of the screen as shown in figure 3.1 represents the video stream.

The flowchart of the BCI can be seen in figure 3.3. The brain and the Emotiv EPOC
headset were discussed in the first chapter. The targets and feature extraction methods
of the BCI along with the signal processing techniques were discussed in the second
chapter. The details of the actual implementation of the signal pipeline and the novel
target identification method will be discussed in sections 3.3 and 3.4 respectively.

Emotiv
EPOC
headset

signal
processing

feature
extraction

target
identification

visual and auditory feedback

command

Figure 3.3: Flowchart of the BCI.
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The robot used in testing the application has very common commands—forward, back,
left, right and stop. Therefore, if the BCI proves to have sufficiently high target detection
speed and accuracy, then it could be adapted to other devices that can be controlled with
similar commands.

3.2 Overview of the application

As already mentioned, the application implements a communication channel between the
brain and a robot, thus making it possible to send control commands to the robot. Brain
activity is recorded using Emotiv EPOC and the recording is analysed with PSDA and
CCA feature extraction methods. The application is open-source, written in Python 2.7
and requires Windows operating system.

The application is divided into the following components:

• MainWindow is the window through which a user can easily change the parameters
of the signal pipeline, feature extraction methods and targets and control the flow
of the application through graphical user interface (GUI);

• TargetsWindow is the window on which the targets are displayed;

• Emotiv is the class which receives the raw data from the Emotiv EPOC headset,
decrypts the data and sends it to other components of the application;

• Robot is the code that sends commands to the robot after the signal has been
analysed and result has been obtained;

• Plot is the code that can be used to plot the EEG signal in real-time;

• Extraction is the code that analyses the signal using PSDA and CCA feature
extraction methods.

• PostOffice is the class that handles the communication between the components
of the application.

There is instance one of each component except the Plot and the Extraction. The
number of Plots and Extractions depends on how many plots the user wants to see or
how many feature extraction methods to use. Each plot and feature extraction method
can have different parameters. Having different parameters on different plots allows
the user to compare how different signal processing affects the signal. Having different
parameters on feature extraction methods allows the user to compare how the parameters
affect the performance of the BCI. Furthermore, feature extraction methods with different
parameters can be used together to complement each other and work as a single feature
extraction method. Combining different feature extraction methods to a single method
is further discussed in section 3.4. For graphical illustration of the components of the
application see figure 3.4.

The PostOffice class is important because each component is running on separate sub-
process, meaning that each component has its own memory space. Thus it is not possible
for the components of the application to communicate by for example writing to and
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Figure 3.4: Components of the application. Lines between the components represent
connections through which the components communicate. The numbers show how many
instances of the same component there can be.

reading from the same variable—their memory is separated—and therefore more com-
plex type of communication has to be used. Alternative to using multiple processes or
multiprocessing is using multiple threads or multithreading. Unlike processes, threads
run in the same memory space but due to the limitations of the standard implementation
of Python, threads cannot use multiple central processing units (CPUs) or multiple CPU
cores at the same time while processes can.

Making use of multiple CPU cores is important because calculating the power spectral
density and analysing the recorded signal using CCA is computationally expensive and
thus it might be necessary to divide the calculations between different CPU cores to
achieve optimal performance and use the BCI in real-time. The Emotiv EPOC headset
is constantly sending new data to the application and the application has to be able to
finish analysing current data before receiving enough data for the next feature extraction.

For the ease of use, the application has GUI. See figure 3.6 for an example of the appli-
cation’s user interface. Multiprocessing is also important to avoid freezing of the whole
application while one window of the GUI is moved or resized. In case of moving a window,
the window manager of Windows operating system freezes the subprocess which is updat-
ing the window. If the application is divided into subprocesses then only the subprocess
which updates the window freezes, the rest of the application continues working.

The usage of multiple subprocesses is achieved by using multiprocessing module from
Python 2.7 standard library. This module also provides connections that can be used for
communication between the components of the application. In addition to the Python
2.7 standard library, the following libraries were used:

• Emokit2 to access raw data from Emotiv EPOC headset;

• PsychoPy [35] for designing visual stimuli and precise timing of the stimuli presen-
tations;

• scikit-learn [34] for calculating CCA algorithm;

2https://github.com/openyou/emokit/tree/master/python/emokit
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• SciPy and NumPy [36] for calculating other advanced mathematical algorithms, for
example FFT;

• PyQtGraph3 for real-time plotting of the data.

The most important part of the implementation of this application is that multiple feature
extraction methods complement each other when analysing EEG recording.

3.3 Signal pipeline of the application

As already discussed in the previous section, the application does not have one specific
signal pipeline, but the parameters of the signal pipeline can be changed from the GUI.
This allows different configurations to be easily tested to find the best settings for con-
trolling a robot and the best settings for different users. See figure 3.5 for the flowchart
of the application’s signal pipeline.
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delete
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Figure 3.5: Flowchart of the application’s signal pipeline.

As seen in figure 3.5, length is the window length and it shows how long filtered signal
is held in memory. Step on the other hand shows how many packets have to be received
before trying to identify user’s choice. If step is smaller than length then the window
is overlapping which means that some of the data that was used in previous feature
extraction will also be used in the next feature extraction. If step is equal to length,
then every consecutive feature extraction uses only new data that has not been analysed
by previous feature extractions. It would not make sense to use larger step than length,
because then some of the data will not be analysed and in this case the target detection
would be slower.

After receiving step packets, the whole filtered signal will be first detrended and then
windowed. Detrending and windowing were thoroughly discussed in sections 2.5.1 and
2.5.2 respectively. Since some data is deleted and new data is added to the signal after

3http://www.pyqtgraph.org
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every step, the windowing cannot be performed only on the previously received signal
segment, but has to be performed on the whole signal every time. Detrending could be
performed only on the previously received signal segment, but using it on the whole signal
gives more possibilities since the same result as would be obtained by detrending every
new signal segment can be achieved by dividing the detrending of the whole signal into
segments with suitable length. In the application this division can be achieved by giving
the break parameter which shows how many breakpoints to use that divide the signal
into equal length segments for detrending.

There are more signal pipeline settings that can be changed through the GUI of the
application and now a brief overview of these settings will be given. See figure 3.6
for illustration of the application’s GUI for choosing signal pipeline components and
parameters.

Figure 3.6: The user interface for choosing signal pipeline options.

The explanation of the signal pipeline settings is the following:

1. Detrend is either linear, constant or none. None means that detrending is not used.
Linear means that linear trend is removed from the raw signal; constant means that
constant trend is removed from the raw signal. Detrending was more thoroughly
discussed in section 2.5.1.
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2. Window is either hann, hamming, blackman, keiser, bartlett or none. None means
that window function is not used. Other options are standard signal processing
window functions. Windowing was more thoroughly discussed in section 2.5.2.

3. Interp is either linear, nearest, zero, slinear, quadratic or cubic. See SciPy docu-
mentation4 for more information. Interpolation was more thoroughly discussed in
section 2.5.3.

4. Filter is either high-pass, low-pass, band-pass or none. None means that filtering
is not used. High-pass filter means that frequencies lower than the given value are
removed from the signal. Similarly, low-pass filter removes frequencies higher than
the given value. Band-pass filter takes two values and removes frequencies that are
not in the given range. See SciPy documentation5 for more information.

5. Step shows how many packets have to be received before trying to identify user’s
choice. For example, if sampling rate is 128 Hz and step is 64 then the feature
extraction algorithms are executed after every 64

128Hz
= 0.5 seconds.

6. Length is the length of the window. Length shows the number of packets on which
the feature extraction algorithms are executed. For example, if sampling rate is
128 Hz and length is 512 then the feature extraction algorithms are performed on
the last 512

128Hz
= 4 seconds of data.

7. Break is the number of breakpoints used when detrending the signal. The break-
points will be equally spaced. If the number of breakpoints is 1, then the breakpoint
will be in the middle of the signal and the trend will be removed separately from
the first half of the signal and the second half of the signal.

8. Arg is the beta argument for kaiser window. See NumPy documentation for details6.

9. Normalise shows whether to normalise the estimated power spectral density as in
equation 2.9 or not.

10. From and to are the frequencies used to specify which frequencies are removed and
which not. From shows the lowest frequency that is passed, lower frequencies than
the value will be removed; to shows the highest frequency that is passed, higher
frequencies than the value will be removed.

11. Taps shows the number of taps or the length of the filter. See SciPy documentation5

for details.

Since the application has GUI and many parameters that can be easily tested, this appli-
cation can be a good tool to compare how different signal pipelines affect the detection
of SSVEPs.

4https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.interp1d.html
5http://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.firwin.html
6http://docs.scipy.org/doc/numpy/reference/generated/numpy.kaiser.html
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3.4 Target identification method

This section describes the target identification method used in this application. As is the
case with the signal pipeline, this application actually does not have one specific feature
extraction method, but the feature extraction method can be changed and a combinations
of different feature extraction methods can be used. To the best of the author’s knowledge,
combining different feature extraction methods while using only SSVEP neuromechanism
has not been used before.

Currently the application has three different feature extraction methods that can be
combined: widely known PSDA and CCA method and a method that is similar to the
PSDA method but the estimated power spectral density is calculated not for each signal
obtained from different channels but for the sum of all the signals from different channels.
If only one channel is used, then this method works exactly the same as standard PSDA
method. In the GUI, this method is called sum PSDA method. Using this method makes
sense, because FFT is linear, meaning that the result will be the same if first the signals
are summed up and then the power spectral density is estimated and if first the power
spectral density is estimated separately for each channel and then the power spectral
density estimates for each channel are summed up.

Unlike the sum PSDA method, the standard PSDA method calculates separate results
for each channel. Both methods send the results to the PostOffice separately for each
harmonic. Which harmonics are used for the detection of which target can be changed
in the GUI. It is also possible to get the result for the sum of different harmonics. The
CCA method is different from the PSDA methods as it gives always only one result, even
if multiple channels and multiple harmonics are used.

Since multiple feature extraction methods can be used together and some feature extrac-
tion methods give more than one result, each feature extraction result is given a certain
weight which shows how much this result affects the final decision. For example, if CCA
and sum PSDA method are used together and from the sum PSDA results the result of
the first harmonic and the result of the sum of all used harmonics are used for each target,
then the weights could be 1 for each sum PSDA result and 2 for CCA result. Then the
target could be finally chosen for example if the sum of the weights for a target is at least
3. This means actually that target is chosen only if CCA method chooses a target and
at least one of the sum PSDA results is the same. This case could be easily implemented
without using weights, but when using more feature extraction methods, the conditions
for choosing a target without using the weights will get more complicated and thus it is
easier to use the weights to make the final decision.

To further improve the performance of the BCI, not only the weights of the last results,
but the weights of multiple previous results are used to make the decision. Thus the
condition would not be that if the sum of the weights of the last results is at least 3, but
for example the sum of the weights of the three previous results is at least 9. If there
are multiple targets that satisfy the condition, then the target with higher sum of the
weights of the previous results is chosen. This case is not possible in the previously given
example, since all the results always correspond to one target. In the previous example
the maximum sum of weights for one set of results is 4, therefore the sum of weights for
the last three sets of results is 4 ·3 = 12. If the condition is that this sum has to be higher
than 9, then the maximum sum of weights for another target is 12 − 9 = 3.
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Finally, the target is chosen if n out of m previous results that were obtained by comparing
the sum the weights of k previous results are the same. See figure 3.7 for graphical
illustration of the target identification method.
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Figure 3.7: Flowchart of the application’s target identification.

It is easy to modify target identification method by changing the code in handleFreq-

Message method in PostOffice.py. This method receives the results of the feature
extraction methods through a connection similarly to the data accessing code discussed
in section 3.5. The results have already been organised into different data structures.

It is also worth mentioning that different feature extraction methods can have different
signal pipelines. For example it would not make sense to window a signal that is later
analysed using CCA, but windowing could be beneficial if the power spectral density of
the signal is later estimated analysed using PSDA method. Thus the application has
the functionality to use multiple signal pipelines with different options, which gives even
more flexibility.

Using PSDA and CCA method together makes the target identification more accurate,
because finally the target is chosen only if different methods give the same result. If
one of the methods makes a mistake and gives a wrong result, then the other method
might still give the correct result. It is less probable for two methods to make the same
mistake at the same time than for one method to make a mistake. Using these two
methods together makes sense, because these methods analyse the EEG signal from two
different aspects—one uses time-domain representation, the other uses frequency-domain
representation.

To further improve this method, the phase information from the frequency spectrum that
is currently being discarded could also be used. One possible usage would be to design
CCA method reference signals with correct phase. Currently both sine and cosine waves
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are used to achieve optimal minimum correlation as discussed in section 2.6.2. But even
without this improvement, combining these methods already improves the performance
of the BCI.

3.5 Using the application with other EEG devices

Although the application was written for Emotiv EPOC, it can be used with other EEG
devices too if it is possible to access the data of these devices with Python script. As
discussed in section 3.2, the communication between the data accessing code and the
rest of the application is implemented using Python multiprocessing module. The data
accessing code runs on separate process and communicates with the rest of the application
by sending messages through multiprocessing connection. It sends raw data through the
connection and receives messages like ”Setup”, ”Start”, ”Stop” and ”Exit”. Each of the
received messages should lead to calling a specific function. If the received message is

• ”Setup”, then the object should get internally ready to start sending data;

• ”Start”, then the object should start sending the data;

• ”Stop”, then the object should stop sending the data;

• ”Exit”, then all the needed clean up procedures should be executed, because the
application is closing.

The easiest way to start using different headset with the application is changing the
code in MyEmotiv.py. The constructor of MyEmotiv class has to take one argument.
This argument is the object that handles the communication between different processes.
The last line in the constructor of MyEmotiv should call the argument’s waitMessages

method, which waits until it receives one of the previously discussed messages. The
waitMessages method takes arguments which are the functions that are called when
corresponding message is received. By replacing these methods in MyEmotiv class, it is
possible to use the application with other EEG devices too. Since the application can be
relatively easily modified to use other EEG devices, it could be a good tool to test how
suitable are different devices for a SSVEP-based BCI.
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4 Results

As discussed in chapter 3, the BCI written as a practical part of this thesis has many
parameters that can be changed and finding the best combination of different parameters
needs thorough testing. Unfortunately, thorough testing did not fit into the scope of this
thesis. The testing was performed on only one subject. By using trial and error method,
settings that are shown in appendix III were fixed for further testing.

After fixing the signal pipeline parameters as shown in table A1, different target identi-
fication parameters were tested. This testing was performed in trials, each trial lasted
60 seconds. Four targets were used with frequencies of 5.45, 6.0, 6.67 and 7.5 Hz. The
rest of the target parameters can be seen in table A2. The application chose randomly a
target that the subject had to look at and after this randomly chosen target was detected
from the EEG recording, the application chose randomly another target that the subject
had to look at and so on. New random target was chosen only if the previous had been
detected. This continued until 60 seconds had passed. If a detected target was not the
target that the application randomly chose, then the result was classified as false positive.
If a detected target was the same as the target that application randomly chose, then the
result was classified as true positive. Accuracy was calculated by dividing the number of
true positives with the total number of results.

The application gave the subject visual feedback about which target had been detected
from the EEG recording and showed the current target that the subject has to look at as
shown in figure 4.1. Laptop computer with 60 Hz refresh rate 14.0” diagonal LED-backlit
HD 16:9 widescreen (1366 x 768) LCD monitor was used for displaying the targets. For
recording the brain activity, Emotiv EPOC EEG device was used.

Figure 4.1: The targets used for testing the application and visual feedback for the
subject. White triangles show the current target that the subject has to look and the
green triangles show the target that was detected.

The feature extraction method’s weight parameters were fixed as shown in table 4.1.
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The method ID corresponds to the method ID in table A1. Finally, different target
identification methods were tested and the results can be seen in figure 4.2. The target
detection time was calculated by dividing 60 seconds with the number of results in the
given trial. The ITR was calculated as shown in equation 2.4.

Method Sensor Harmonic Weight
ID
1 Sum of all 1 6

Sum of all Sum of all 6
2 All All 12
3 O1 1 1

O2 1 1
O1 Sum of all 1
O2 Sum of all 1
Sum of all Sum of all 1
Sum of all Sum of all 1

4 All All 6

Table 4.1: Weights of the feature extraction methods.

The threshold, k, m and n in table 4.2 are the target identification parameters that were
discussed in section 3.4.

Trial ID Target detection Accuracy ITR (bits/min) Threshold k m n
time (sec) (%)

1 3.00 95.00 32.69 65 3 4 3
2 2.86 90.48 29.30 70 3 3 2
3 2.86 80.95 20.91 65 3 5 3
4 2.86 80.95 20.91 65 3 7 5
5 2.73 95.45 36.55 65 3 5 4
6 2.73 90.91 31.16 65 3 4 3
7 2.73 90.91 31.16 65 3 6 4
8 2.73 81.82 22.61 65 3 8 5
9 2.40 88.00 32.01 65 3 7 4
10 2.40 80.00 24.03 65 3 8 4
11 2.31 84.62 29.56 65 3 3 2
12 2.22 81.48 27.41 60 3 4 3
13 2.14 75.00 22.19 65 3 4 2

Average: 2.61 ± 0.28 85.81 ± 6.39 27.73 ± 5.11

Table 4.2: Results of 13 trials of testing the application. Threshold is the value that the
sum of the weights of the k previous results has to exceed for the corresponding target
to be added to the list of results. From the list of results, a target is chosen if there are
at least n occurrences of the targets. The list of results has the length of m.

The results presented in this section can be compared to other BCIs that also use Emotiv
EPOC headset. The results of the previous BCIs can be seen in table 2.1.
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Conclusion

The aim of this thesis has been to describe an SSVEP-based BCI implemented as a
practical part of this thesis. In the first chapter the biological background was discussed
to understand how brain activity can be measured and a low-cost EEG device called
Emotiv EPOC was chosen for recording the brain activity.

The second chapter provided an overview of the mathematical and technological back-
ground. Widely used feature extraction methods called PSDA and CCA were discussed in
this chapter along with signal processing techniques. All the discussed feature extraction
methods and signal processing techniques were used in the implemented application.

Finally, the third chapter described the implemented application itself. The strengths of
the application compared to the existing applications are that this application is open-
source, it allows different options for signal pipeline to be easily tested and it combines
different SSVEP feature extraction methods. Although there are hybrid BCIs that use
different neuromechanisms and therefore these BCIs use different feature extraction meth-
ods, to the best of the author’s knowledge there are no BCIs that use different feature
extraction methods with one neuromechanism, in this case SSVEP.

The application could be further developed to support different EEG devices and more
feature extraction methods to find the best combination of different feature extraction
methods. Using multiple methods at the same time clearly improves the performance of a
BCI, but on the other hand it is computationally more expensive. But as the technology
improves, this becomes less relevant.

Although the application was not thoroughly tested, it already shows very good results
compared to the previous BCIs. Current results show that the application is quite stable
with target detection time of 2.61 seconds while the target detection times of the previous
BCIs are reported to be 3 seconds or more. Thus it is important to test and improve the
application further to find settings that give even better results and maybe some day this
BCI will have good enough performance to be adapted for controlling real world devices.
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I Glossary

action potential – event of sending signals used by neurons. 8, 9

axon – nerve fibre through which a neuron sends signals. 7, 8

canonical correlation – correlation between the linear combinations of two data sam-
ples. 31

central visual field – very centre of gaze that is clearly seen, not like peripheral vision
that is blurry. 12

correlation – the Pearson product-moment correlation coefficient. Covariance divided
by the product of standard deviations. 29–31

covariance – measure of similarity. 28–30

cross-correlation – measure of similarity for two signals as a function of similarity
versus time lag between the signals. 29, 30

current dipole – formed by a sink and a source around postsynaptic cell. Dipoles
produce electric field that can be measured from the scalp using EEG. 9

dendrite – nerve ending through which a neuron receives signals. 7, 8

detrend – removing the trend from a signal. 22–24, 26, 38–40

digital signal – a sequence of values that were obtained from measuring the value of
analogue signal in a certain time interval. 13, 18, 19, 22, 25, 26

duty cycle – the percentage of the amount of time the target is in displayed state in
one period of the waveform. 16, 20

electromagnetic – functional neuroimaging technique that measures electric or mag-
netic fields. 9, 10

feature extraction – analysing the EEG recording in a VEP-based BCI. Feature ex-
traction possibly gives multiple results and later the final result has to be chosen
from these results. 27–29, 31–33, 35–38, 40–42, 44, 46

flickering – the blinking or the state switches of a target. 15–21

flickering waveform – waveform obtained when plotting the state switches of a target.
16, 17, 19–21

Fourier transform – transforming a signal from time domain to frequency domain. 18,
19, 21

frame – the consecutive images shown on screen that make up the moving picture. 15–17

frequency bin – a value at which the frequency spectrum or the power spectral density
function is defined. 19, 23, 25–27

frequency component – a pure tone that a signal contains. 18–22, 25
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frequency spectrum – a function of amplitude and phase versus frequency of a signal.
18, 19, 42

functional neuroimaging – measuring an aspect of brain function. 9

fundamental – frequency component of a signal that has the lowest frequency among
all the frequency components. 19, 20

haemodynamic – functional neuroimaging technique that measures blood oxygenation
and blood flow. 9, 10

harmonic – frequency component of a signal that has a frequency which is integer
multiple of the fundamental frequency. 19, 20, 41

interpolation – approximating unknown values. 25, 26, 40

ionophoric protein – proteins used to transport ions across cell membrane. 8

linear combination – for a sequence of values, each value is multiplied by a constant
and the result is added up. 31

mean – the measure of central tendency. 22, 24, 26–29

membrane potential – difference in electric potential between the inside of a neuron
and the extracellular fluid around the neuron. 8

neural pathway – network formed by functionally related neurons. 8, 12

neuron – nerve cell, main building block of the brain. 7–10

Nyguist frequency – half the sampling rate. 19

pattern reversal – type of a target. Pattern reversal targets reverse their patterns on
the screen. 17

periodogram – estimate of power spectral density. 18, 27

peripheral vision – not the centre of gaze but the area that surrounds the centre and
is not as clearly seen. 12

postsynaptic cell – a cell that received a signal through a synapse. This term is used
for example when discussing single action potential and its effect on the cell that
receives the signal. 8

postsynaptic potential – change in the membrane potential in a postsynaptic cell
caused by synaptic input. 8, 9

power spectral density – a function of power versus frequency of a signal. 18, 19, 21,
23–28, 37, 40–42

primary visual pathway – neural pathway that is used to convey information that is
essential for seeing. 11, 12

pure tone – waveform that contains only one frequency. 17–19, 29
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rectangular wave – periodic waveform that is similar to the square wave, but does
not have the symmetrical shape, hence its duty cycle is not 50%. The transition
between maximum and minimum is instantaneous. 16, 19, 20

reference signal – a signal used in CCA method to find certain frequencies in recorded
signal by comparing the recorded signal to it. 29–31, 42

refresh rate – the number of consecutive images shown on screen in one second. 15–17,
44

resting potential – membrane potential of a neuron at a resting state. 8

resting state – state of a neuron that is not exited and not sending signals at the
moment. 8

sample – a set of data. 28–31

sampling rate – rate at which samples are obtained for example from an EEG device.
13, 14, 19, 40

single graphic – type of a target. Single graphic targets blink on the screen. 17

sink – part of the current dipole that is more negatively charged than source. 8, 9

source – part of the current dipole that is more positively charged than sink. 8, 9

spectral leakage – if a signal is divided into segments so that a component of the signal
does not have an integer multiple of its period in a segment and FFT is performed
on this segment, then some of the power of that component’s frequency will be
distributed over other frequency bins. 23

square wave – periodic waveform that has duty cycle of 50%, is symmetric and the
transition between maximum and minimum is instantaneous. 16, 19, 20

state – state of a target. 15–19

statistic – a measure of an attribute of a sample. 28

synapse – a connection between neurons. 7

target – visual stimuli of a VEP-based BCI 15–18, 20, 21, 25, 27–31, 33–36, 38, 41, 42,
44–46

template matching – feature extraction method which compares current signal to pre-
viously obtained templates. 29

temporal resolution – the shortest time period of neural activity that is reliably sep-
arated out by a measuring technique. 10

threshold potential – certain threshold value. If the membrane potential exceeds
threshold potential, action potential is initiated. 8

trend – steady increase or decrease of values in a signal. 21–24
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visual processing centre – part of the brain that is responsible for visual perception.
11, 12

window – a function that is used to smooth the ends of a signal. 23–26, 33, 38–40, 42

zero padding – adding zeros to the end of the signal for example to get desired frequency
bins in frequency spectrum. 25, 26
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II Acronyms

ADC analog-to-digital converter 13, 14

BCI brain-computer interface 2, 15, 18, 20, 21, 24, 25, 27–29, 31–37, 41, 43–46

CCA canonical correlation analysis 2, 6, 27–32, 36, 37, 41, 42, 46

CPU central processing unit 37

EEG electroencephalography 2, 3, 6, 10–15, 18, 19, 21, 23, 25, 27–29, 31, 32, 36, 38,
42–44, 46

ERP event-related potential 11

FFT fast Fourier transform 19, 23, 25, 38, 41

fMRI functional magnetic resonance imaging 9, 10, 28

fNIRS functional near-infrared spectroscopy 9, 10

GUI graphical user interface 36–41

ITR information transfer rate 2, 21, 45

LASSO least absolute shrinkage and selection operator 32

LED light-emitting diode 15, 34

LRT likelihood ratio test 32

MEC minimum energy combination 32

MEG magnetoencephalography 10

MPCC multi-phase cycle coding 32

PET positron emission tomography 9, 10

PSDA power spectrum density analysis 2, 6, 27, 28, 32, 36, 41, 42, 46

SC stability coefficient 32

SNR signal-to-noise ratio 27, 28

SSVEP steady-state visual evoked potential 2, 12–17, 19–23, 25, 27–30, 32, 34, 40, 41,
43, 46

VEP visual evoked potential 11–13, 15, 32

56



II
I

F
ix

e
d

p
a
ra

m
e
te

rs
fo

r
te

st
in

g

M
et

h
o
d

E
x
tr

ac
ti

on
L

en
gt

h
S
te

p
S
en

so
rs

D
et

re
n
d

D
et

re
n
d

W
in

d
ow

K
ai

se
r

In
te

rp
ol

at
io

n
F

il
te

r
ID

m
et

h
o
d

(s
ec

)
(s

ec
)

b
re

ak
p

oi
n
ts

b
et

a
1

S
u
m

P
S
D

A
2

0.
12

5
O

1,
O

2
L

in
ea

r
5

K
ai

se
r

14
Q

u
ad

ra
ti

c
-

2
C

C
A

2
0.

12
5

O
1,

O
2,

P
7,

P
8

L
in

ea
r

5
-

-
-

-
3

P
S
D

A
1

0.
12

5
O

1,
O

2
L

in
ea

r
3

K
ai

se
r

14
Q

u
ad

ra
ti

c
-

4
C

C
A

1
0.

12
5

O
1,

O
2,

P
7,

P
8

L
in

ea
r

3
-

-
-

-

T
ab

le
A

1:
S
et

ti
n
gs

of
th

e
fe

at
u
re

ex
tr

ac
ti

on
m

et
h
o
d
’s

si
gn

al
p
ip

el
in

es
.

T
ar

ge
t

F
re

q
u
en

cy
H

ar
m

on
ic

s
P

os
it

io
n

x
P

os
it

io
n

y
C

ol
or

T
y
p

e
S
h
ap

e
W

id
th

H
ei

gh
t

ID
(H

z)
in

ex
tr

ac
ti

on
(p

ix
el

)
(p

ix
el

)
(p

ix
el

)
(p

ix
el

)
1

5.
45

1,
2,

3
0

-2
00

W
h
it

e
S
in

gl
e

gr
ap

h
ic

S
q
u
ar

e
15

0
15

0
2

6.
0

1,
2,

3
-3

00
0

W
h
it

e
S
in

gl
e

gr
ap

h
ic

S
q
u
ar

e
15

0
15

0
3

6.
67

1,
2,

3
0

20
0

W
h
it

e
S
in

gl
e

gr
ap

h
ic

S
q
u
ar

e
15

0
15

0
4

7.
5

1,
2,

3
30

0
0

W
h
it

e
S
in

gl
e

gr
ap

h
ic

S
q
u
ar

e
15

0
15

0

T
ab

le
A

2:
S
et

ti
n
gs

of
th

e
ta

rg
et

s.

57



IV Code of the application

The application written as a practical part of this thesis is open-source and the code
is accessible from Github repository1. The detailed description of the application is in
chapter 3 of this thesis. For the most up to date instructions on which libraries are
required, how the repository is structured and how to start using the application, see
README.md file in the repository.

1https://github.com/kahvel/VEP-BCI
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