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In life sciences model interpretation has a special significance
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In life sciences model interpretation has a special significance

Interpretability in ML

® Trust in model's decision
® | egal transparency

® Debugging
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Applying this principle in Neuroscience

"Identifying task-relevant
spectral signatures of
perceptual categorization in

the human cortex"
Scientific Reports, 2020

"Activations of deep
convolutional neural networks

are aligned with gamma band

activity of human visual cortex'’
Communications Biology, 2018

"Mental state space visualization
for interactive modeling of
personalized BCl control

strategies”
Journal of Neural Engineering, 2020
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Multiple brain regions respond when a stimulus is shown,
but only a small fraction (5%) are predictive of a category.



Identitying task-relevant spectral signatures of perceptual
categorization in the human visual cortex
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While some locations are predictive of multiple visual

categories, others have narrow specialization.
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Identitying task-relevant spectral signatures of perceptual
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Identitying task-relevant spectral signatures of perceptual
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It is believed that high-frequency activity . .
. . . Across all categories the classifier
reflects the information processing . .

relied on power decreases in different

durina hiah itive tasks. We sh
uring nigh cognitive tasks. vve snow brain networks, not only on the

that low-frequency activity is almost as

. increases to perform the classification
important for the task at hand. P
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Activations of deep convolutional neural networks are
aligned with gamma band activity of human visual cortex
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Activations of deep convolutional neural networks are
aligned with gamma band activity of human visual cortex

From previous tMRI research we knew that
there is a mapping between the hierarchies

Intracranial electrophysiological data allowed
us to learn when and at which frequencies



Activations of deep convolutional neural networks are
aligned with gamma band activity of human visual cortex
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Activations of deep convolutional neural networks are
aligned with gamma band activity of human visual cortex
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Activations of deep convolutional neural networks are
aligned with gamma band activity of human visual cortex
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Activations of deep convolutional neural networks are
aligned with gamma band activity of human visual cortex
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Activations of deep convolutional neural networks are
aligned with gamma band activity of human visual cortex
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Activations of deep convolutional neural networks are
aligned with gamma band activity of human visual cortex
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Activations of deep convolutional neural networks are
aligned with gamma band activity of human visual cortex

- simple features (mapped to lower layers of DCNN)
- complex features (higher layers)



Activations of deep convolutional neural networks are
aligned with gamma band activity of human visual cortex
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Mental state space visualization for interactive modeling

of personalized BCI control strategies
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Mental state space visualization for interactive modeling
of personalized BCI control strategies
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Mental state space visualization for interactive modeling
of personalized BCI control strategies
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If the user could see machine's representation of his mental
actions he could find out which ones are suitable



Mental state space visualization for interactive modeling
of personalized BCI control strategies

A A AT A A AMA

A T oA NN

original feature space




Mental state space visualization for interactive modeling
of personalized

il s AN Ma A
ANV i AN oy
it ARAN SN AR AN ARNVIARY
fpswicminap A A AT ARAL I AN Aot

el
AR RANY
ikt

>

s Pom St

original feature space

/2
==




Mental state space visualization for interactive modeling
of personalized
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RESEARCH
PROJECT

Kuzovkin et al.,
“Identifying task-relevant spectral
signatures of perceptual

categorization in the human cortex"
Scientific Reports, 2020 (in review)

Kuzovkin et al.,

"Activations of deep
convolutional neural networks
are aligned with gamma band

activity of human visual cortex"
Communications Biology, 2018

Kuzovkin et al.,
"Mental state space visualization for
interactive modeling of personalized

BClI control strategies"
Journal of Neural Engineering, 2020

LEVEL OF NEURAL
ORGANIZATION

Local responses of a
neural population

Correlates of

mental states
("thoughts")

KNOWLEDGE REPRESENTAION
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Random Forests:

feature-based rules

DNNs: distributed representations
over features (input or latent)

original feature space

Self-Organizing Maps:
topology of the samples

http://news.mit.edu/2014/optogenetic-toolkit

-goes-multicolor-0209



http://news.mit.edu/2014/optogenetic-toolkit-goes-multicolor-0209
http://news.mit.edu/2014/optogenetic-toolkit-goes-multicolor-0209

Interpretability adds a new axis for algorithm selection

Ditterent machine learning algorithms capture knowledge
into different representations

T2A

/@/;‘/ /// original feature space

7 /7

Support Vector Machines: Self-Organizing Maps: Hidden Markov Models:
points in the feature space topology of the samples states and transitions

Output layer @
Input layer ‘ ‘ Hidden layer )i
DNNs: distributed representations Random Forests: Gaussian Processes:
over features (input or latent) feature-based rules functions

Pick the one that will reveal the knowledge you are after,
not the one that just gives the best performance on a metric.
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https://math.stackexchange.com/tags/neural-networks/info
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https://blog.toadworld.com/2018/08/31/random-forest-machine-learning-in-r-python-and-sql-part-1
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Curiously similar mechanisms in biological and artificial systems
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Curiously similar mechanisms in biological and artificial systems
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Interpreting the mechanisms of machine learning models
can shed light on the mechanisms of the brain
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Discussion

® Modeling is a well-proven way of obtaining knowledge

® Machine-learned models do capture the knowledge, but an additional step of
interpretation is required

® |n life sciences model interpretation has a special significance

® Three examples of applying this principle in Neuroscience

. \\ /\ /\
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v

"ldentifying task-relevant "Activations of deep "Mental state space
spectral signatures of convolutional neural networks visualization for interactive
perceptual categorization in are aligned with gamma band modeling of personalized BCI
the human cortex" activity of human visual cortex" control strategies"
Scientific Reports, 2020 Communications Biology, 2018 Journal of Neural Engineering, 2020

® |nterpretability adds a new axis for algorithm selection

® |nterpreting the mechanisms of machine learning models can shed light on the
mechanisms of the brain
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Neuroscience

Aims to understand
learning systems
and intelligence

by analyzing
and reverse
engineering
the existing

example

a special kind
of synergy that
leads to curious

similarities

Aims

to build

an intelligent

system ground-up

by tiguring out the

building blocks and rules

of interactions between them
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Curiously similar mechanisms in biological and artificial systems

Experience replay

Hippocampus
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Hierarchy of visual layers An efficient spacial code

Deep convolutional neural network

Selt-emergent spacial code
® | ayered structure

® Hierarchy of representational complexity

® Receptive fields €= convolutional filters Grid-based code for location



