
INTRODUCTION TO
GPU COMPUTING

Ilya Kuzovkin

13 May 2014, Tartu

PART I
“TEAPOT”

SIMPLE OPENGL PROGRAM

Idea of computing on
GPU emerged
because GPUs
became very good at
parallel computations.

SIMPLE OPENGL PROGRAM

Idea of computing on
GPU emerged
because GPUs
became very good at
parallel computations.
!
Let us start from
observing an example
of parallelism in a
simple OpenGL
application.

SIMPLE OPENGL PROGRAM
You will need CodeBlocksWindows, Linux or XCodeMac to run
this example.

• Install CodeBlocks bundled with MinGW compiler from
http://www.codeblocks.org/downloads/26

!
• Download codebase from https://github.com/kuz/

Introduction-to-GPU-Computing
!
• Open the project from the code/Cube!
!
• Compile & run it

http://www.codeblocks.org/downloads/26
https://github.com/kuz/Introduction-to-GPU-Computing

SHADER PROGRAM

Program which is executed on GPU.
Has to be written using shading language.
In OpenGL this language is GLSL, which is based on C.

http://www.opengl.org/wiki/Shader

http://www.opengl.org/wiki/Shader

SHADER PROGRAM

Program which is executed on GPU.
Has to be written using shading language.
In OpenGL this language is GLSL, which is based on C.

OpenGL has 5 main shader stages:
• Vertex Shader
• Tessellation Control
• Geometry Shader
• Fragment Shader
• Compute Shader (since 4.3)

http://www.opengl.org/wiki/Shader

http://www.opengl.org/wiki/Shader

SHADER PROGRAM

Program which is executed on GPU.
Has to be written using shading language.
In OpenGL this language is GLSL, which is based on C.

OpenGL has 5 main shader stages:
• Vertex Shader
• Tessellation Control
• Geometry Shader
• Fragment Shader
• Compute Shader (since 4.3)

http://www.opengl.org/wiki/Shader

http://www.opengl.org/wiki/Shader

LIGHTING

Is it a cube or not?
We will find out as soon as
we add lighting to the scene.

LIGHTING

Is it a cube or not?
We will find out as soon as
we add lighting to the scene.

https://github.com/konstantint/ComputerGraphics2013/blob/master/Lectures/07%20-%20Color%20and%20Lighting/slides07_colorandlighting.pdf

https://github.com/konstantint/ComputerGraphics2013/blob/master/Lectures/07%20-%20Color%20and%20Lighting/slides07_colorandlighting.pdf

LIGHTING

Is it a cube or not?
We will find out as soon as
we add lighting to the scene.

https://github.com/konstantint/ComputerGraphics2013/blob/master/Lectures/07%20-%20Color%20and%20Lighting/slides07_colorandlighting.pdf

Exercise: code that equation into
fragment shader of the Cube program

https://github.com/konstantint/ComputerGraphics2013/blob/master/Lectures/07%20-%20Color%20and%20Lighting/slides07_colorandlighting.pdf

LIGHTING

• Run the program with lighting enabled and look at
FPS values

COMPARE FPS

• Run the program with lighting enabled and look at
FPS values

!
• In cube.cpp idle() function uncomment dummy

code which simulates approximately same amount of
computations as Phong lighting model requires.

COMPARE FPS

• Run the program with lighting enabled and look at
FPS values

!
• In cube.cpp idle() function uncomment dummy

code which simulates approximately same amount of
computations as Phong lighting model requires.

!
• Note that these computations are performed on CPU

COMPARE FPS

• Run the program with lighting enabled and look at
FPS values

!
• In cube.cpp idle() function uncomment dummy

code which simulates approximately same amount of
computations as Phong lighting model requires.

!
• Note that these computations are performed on CPU
!
• Observe how FPS has changed

COMPARE FPS

• Run the program with lighting enabled and look at
FPS values

!
• In cube.cpp idle() function uncomment dummy

code which simulates approximately same amount of
computations as Phong lighting model requires.

!
• Note that these computations are performed on CPU
!
• Observe how FPS has changed

Parallel computations are fast on GPU.
Lets use it to compute something useful.

COMPARE FPS

PART II
“OLD SCHOOL”

OPENGL PIPELINE + GLSL

http://www.opengl.org/wiki/Framebuffer

Take the input data from
the CPU memory and put

it as an image into the
GPU memory

http://www.opengl.org/wiki/Framebuffer

In the fragment shader
perform a computation on
each of the pixels of that

image

Take the input data from
the CPU memory and put

it as an image into the
GPU memory

OPENGL PIPELINE + GLSL

http://www.opengl.org/wiki/Framebuffer

In the fragment shader
perform a computation on
each of the pixels of that

image

Store the resulting image
to the Render Buffer inside

the GPU memory

Take the input data from
the CPU memory and put

it as an image into the
GPU memory

OPENGL PIPELINE + GLSL

http://www.opengl.org/wiki/Framebuffer

Read output from the GPU
memory back to the CPU

memory

Store the resulting image
to the Render Buffer inside

the GPU memory

In the fragment shader
perform a computation on
each of the pixels of that

image

Take the input data from
the CPU memory and put

it as an image into the
GPU memory

OPENGL PIPELINE + GLSL

• Create texture where will store the input data

http://www.opengl.org/wiki/Framebuffer

OPENGL PIPELINE + GLSL

• Create texture where will store the input data
!
!
!
!
!
• Create FrameBuffer Object (FBO) to “render” to

http://www.opengl.org/wiki/Framebuffer

OPENGL PIPELINE + GLSL

• Run OpenGL pipeline

http://www.opengl.org/wiki/Framebuffer

OPENGL PIPELINE + GLSL

• Run OpenGL pipeline
• Render GL_QUADS of same size as the texture matrix

http://www.opengl.org/wiki/Framebuffer

OPENGL PIPELINE + GLSL

• Run OpenGL pipeline
• Render GL_QUADS of same size as the texture matrix
• Use fragment shader to perform per-fragment

computations using data from the texture

http://www.opengl.org/wiki/Framebuffer

OPENGL PIPELINE + GLSL

• Run OpenGL pipeline
• Render GL_QUADS of same size as the texture matrix
• Use fragment shader to perform per-fragment

computations using data from the texture
• OpenGL will store result in the texture given to the

Render Buffer (within Framebuffer Object)

http://www.opengl.org/wiki/Framebuffer

OPENGL PIPELINE + GLSL

• Run OpenGL pipeline
• Render GL_QUADS of same size as the texture matrix
• Use fragment shader to perform per-fragment

computations using data from the texture
• OpenGL will store result in the texture given to the

Render Buffer (within Framebuffer Object)
!
• Read the data from the Render Buffer

http://www.opengl.org/wiki/Framebuffer

OPENGL PIPELINE + GLSL

• Run OpenGL pipeline
• Render GL_QUADS of same size as the texture matrix
• Use fragment shader to perform per-fragment

computations using data from the texture
• OpenGL will store result in the texture given to the

Render Buffer (within Framebuffer Object)
!
• Read the data from the Render Buffer
!
!
!
!
• Can we use that to properly debug GLSL?

http://www.opengl.org/wiki/Framebuffer

OPENGL PIPELINE + GLSL

Run the project from the code/FBO

DEMO

PART III
“MODERN TIMES”

COMPUTE SHADER
• Since OpenGL 4.3
• Used to compute things not related to rendering directly

COMPUTE SHADER
• Since OpenGL 4.3
• Used to compute things not related to rendering directly

COMPUTE SHADER

http://web.engr.oregonstate.edu/~mjb/cs557/Handouts/compute.shader.1pp.pdf

• Since OpenGL 4.3
• Used to compute things not related to rendering directly

Will not talk

about it

http://web.engr.oregonstate.edu/~mjb/cs557/Handouts/compute.shader.1pp.pdf

http://wiki.tiker.net/CudaVsOpenCL

http://wiki.tiker.net/CudaVsOpenCL

Supported only by
nVidia hardware

Supported by nVidia,
AMD, Intel, Qualcomm

https://developer.nvidia.com/cuda-gpus http://www.khronos.org/conformance/adopters/conformant-products#opencl

http://wiki.tiker.net/CudaVsOpenCL

https://developer.nvidia.com/cuda-gpus
http://www.khronos.org/conformance/adopters/conformant-products#opencl
http://wiki.tiker.net/CudaVsOpenCL

Supported only by
nVidia hardware

Supported by nVidia,
AMD, Intel, Qualcomm

https://developer.nvidia.com/cuda-gpus http://www.khronos.org/conformance/adopters/conformant-products#opencl

Implementations only
by nVidia OpenCL

http://wiki.tiker.net/CudaVsOpenCL

https://developer.nvidia.com/cuda-gpus
http://www.khronos.org/conformance/adopters/conformant-products#opencl
http://wiki.tiker.net/CudaVsOpenCL

Supported only by
nVidia hardware

Supported by nVidia,
AMD, Intel, Qualcomm

https://developer.nvidia.com/cuda-gpus http://www.khronos.org/conformance/adopters/conformant-products#opencl

Implementations only
by nVidia OpenCL

http://wiki.tiker.net/CudaVsOpenCL

~same performance levels

https://developer.nvidia.com/cuda-gpus
http://www.khronos.org/conformance/adopters/conformant-products#opencl
http://wiki.tiker.net/CudaVsOpenCL

Supported only by
nVidia hardware

Supported by nVidia,
AMD, Intel, Qualcomm

https://developer.nvidia.com/cuda-gpus http://www.khronos.org/conformance/adopters/conformant-products#opencl

Implementations only
by nVidia OpenCL

http://wiki.tiker.net/CudaVsOpenCL

~same performance levels

Developer-friendly OpenCL

https://developer.nvidia.com/cuda-gpus
http://www.khronos.org/conformance/adopters/conformant-products#opencl
http://wiki.tiker.net/CudaVsOpenCL

PART III
CHAPTER 1

KERNEL

KERNEL

KERNEL

WRITE AND READ DATA ON GPU

WRITE AND READ DATA ON GPU

… run computations here …

WRITE AND READ DATA ON GPU

… run computations here …

THE COMPUTATION

THE COMPUTATION

THE COMPUTATION

THE COMPUTATION

THE COMPUTATION

DEMO

Open, study and run the project from the code/OpenCL

PART III
CHAPTER 2

CUDA PROGRAMMING MODEL

• CPU is called “host”
• Move data CPU <-> GPU memory cudaMemcopy
• Allocate memory cudaMalloc	

• Launch kernels on GPU

• GPU is called “device”

CUDA PROGRAMMING MODEL

• CPU is called “host”
• Move data CPU <-> GPU memory cudaMemcopy
• Allocate memory cudaMalloc	

• Launch kernels on GPU

• GPU is called “device”

1. CPU allocates memory on GPU
2. CPU copies data to GPU memory
3. CPU launches kernels on GPU (process the data)
4. CPU copies results back to CPU memory

Typical CUDA program

CUDA PROGRAMMING MODEL

• CPU is called “host”
• Move data CPU <-> GPU memory cudaMemcopy
• Allocate memory cudaMalloc	

• Launch kernels on GPU

• GPU is called “device”

1. CPU allocates memory on GPU
2. CPU copies data to GPU memory
3. CPU launches kernels on GPU (process the data)
4. CPU copies results back to CPU memory

Typical CUDA program

Very similar to the
logic of OpenCL

EXAMPLE

Introduction to Parallel Programming @ Udacity
https://www.udacity.com/course/cs344

https://www.udacity.com/course/cs344

EXAMPLE

Introduction to Parallel Programming @ Udacity
https://www.udacity.com/course/cs344

https://www.udacity.com/course/cs344

EXAMPLE

Introduction to Parallel Programming @ Udacity
https://www.udacity.com/course/cs344

https://www.udacity.com/course/cs344

EXAMPLE

Introduction to Parallel Programming @ Udacity
https://www.udacity.com/course/cs344

https://www.udacity.com/course/cs344

EXAMPLE

Introduction to Parallel Programming @ Udacity
https://www.udacity.com/course/cs344

https://www.udacity.com/course/cs344

EXAMPLE

Introduction to Parallel Programming @ Udacity
https://www.udacity.com/course/cs344

https://www.udacity.com/course/cs344

EXAMPLE

Introduction to Parallel Programming @ Udacity
https://www.udacity.com/course/cs344

https://www.udacity.com/course/cs344

PART IV
“DISCUSSION”

LINKS
• Code repository for this presentation

• https://github.com/kuz/Introduction-to-GPU-Computing
• Feel free to leave feature requests there, ask questions, etc.

!
• OpenCL tutorials & presentations

• http://streamcomputing.eu/knowledge/for-developers/tutorials/
• http://opencl.codeplex.com/wikipage?title=OpenCL%20Tutorials%20-%201&referringTitle=OpenCL%20Tutorials
• http://www.cc.gatech.edu/~vetter/keeneland/tutorial-2011-04-14/06-intro_to_opencl.pdf

!
• Introduction to Parallel Computing @ www.udacity.com

• https://www.udacity.com/course/cs344
!
• Slides about Compute Shader

• http://web.engr.oregonstate.edu/~mjb/cs557/Handouts/compute.shader.1pp.pdf
!
• Introduction to Computer Graphics with codebases

• https://github.com/konstantint/ComputerGraphics2013
!
• GLSL Computing (aka “Old school”)

• http://www.computer-graphics.se/gpu-computing/lab1.html

https://github.com/kuz/Introduction-to-GPU-Computing
http://streamcomputing.eu/knowledge/for-developers/tutorials/
http://opencl.codeplex.com/wikipage?title=OpenCL%20Tutorials%20-%201&referringTitle=OpenCL%20Tutorials
http://www.cc.gatech.edu/~vetter/keeneland/tutorial-2011-04-14/06-intro_to_opencl.pdf
http://www.udacity.com
https://www.udacity.com/course/cs344
http://web.engr.oregonstate.edu/~mjb/cs557/Handouts/compute.shader.1pp.pdf
https://github.com/konstantint/ComputerGraphics2013
http://www.computer-graphics.se/gpu-computing/lab1.html

