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Perceptron

Frank Rosenblatt1957

“[The Perceptron is] the embryo of an electronic computer that 
[the Navy] expects will be able to walk, talk, see, write, 

reproduce itself and be conscious of its existence.”
THE NEW YORK TIMES
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Sigmoid & Backpropagation

(Werbos)  Rumelhart, Hinton, Williams
(1974)      1986

“Learning representations by back-propagating errors” (Nature)

Measure how small changes in weights affect output

Multilayer neural networks, etc.

Can apply NN to regression
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Where it has started
Why DL revolution did not happen in 1986?

• Not enough data (datasets were 1000 times 
too small) 

!

• Computers were too slow (1,000,000 times) 
!

• Not enough attention to network initialization 
!

• Wrong non-linearity

FROM A TALK BY GEOFFREY HINTON
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How it learns
Backpropagation

http://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example

Given inputs 0.05 and 0.10, 
we want the neural network 
to output 0.01 and 0.99

NET  OUT

• Repeat for w6, w7, w8 
• In analogous way for w1, w2, w3, w4 
• Calculate the total error again: 

                                      it was: 
!

• Repeat 10,000 times:                

0.291027924
0.298371109

0.000035085

http://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example
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How it evolved
One hidden layer

98.2% on the MNIST test set Activity of a 100 hidden 
neurons (out of 625)

Alec Radford “Introduction to Deep Learning with Python”
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How it evolved
“Modern” ANN

• Several hidden layers 
• ReLU activation units 
• Dropout

99.0% on the MNIST test set 
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Edge detector is a handcrafted feature detector.
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How it evolved
Convolution

The idea of a convolutional layer is to learn feature 
detectors instead of using handcrafted ones

99.50% on the MNIST test set 
CURRENT BEST: 99.77% by committee of 35 conv. nets

http://yann.lecun.com/exdb/mnist/
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How it evolved
More layers

C. Szegedy, et al., “Going Deeper with Convolutions”, 2014

ILSVRC 2015 winner — 152 (!) layers

K. He et al., “Deep 
Residual Learning 

for Image 
Recognition”, 

2015
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How it evolved
Hyperparameters

• Network: 
• architecture 
• number of layers 
• number of units (in each layer) 
• type of the activation function 
• weight initialization 

• Convolutional layers: 
• size 
• stride 
• number of filters 

• Optimization method: 
• learning rate 
• other method-specific 

constants 
• …

Grid search :(

Random search :/

Bayesian optimization :)

Informal parameter search :)
Snoek, Larochelle, Adams, “Practical Bayesian Optimization of Machine Learning Algorithms”
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How it evolved
Major Types of ANNs

recurrent autoencoder

feedforward convolutional
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What is the state now
Computer vision

http://cs.stanford.edu/people/karpathy/deepimagesent/

Kaiming He, et al. 
“Deep Residual Learning for Image Recognition” 
2015



What is the state now
Natural Language Processing

speech recognition + translation Facebook bAbi dataset: question answering

http://smerity.com/articles/2015/keras_qa.html

http://karpathy.github.io/2015/05/21/rnn-effectiveness/



What is the state now
AI

DeepMind’s DQN



What is the state now
AI

Sukhbaatar et al. “MazeBase: A Sandbox for Learning from Games”, 2015DeepMind’s DQN
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How can you use it
Pre-trained models

• Go to https://github.com/BVLC/caffe/wiki/Model-Zoo, pick a model 
!
!
!
!
• … and use it in your application 
• Or … 
!
!
!
!
• … use part of it as the starting point for your model

. . .

https://github.com/BVLC/caffe/wiki/Model-Zoo
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Low-level High-level & 
Wrappers
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• A Step by Step Backpropagation Example 
http://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example 

• Online book by By Michael Nielsen 
http://neuralnetworksanddeeplearning.com 

• CS231n: Convolutional Neural Networks for Visual Recognition 
http://cs231n.stanford.edu/

http://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example
http://neuralnetworksanddeeplearning.com
http://cs231n.stanford.edu/

