The Brain and the Modern Al

Drastic differences and curious similarities

llya Kuzovkin

)

UNIVERSITY ~==
I e TARTU "TWORLD

163



A supercomputer that works like the human INSIGHTS o =
brain has just been turned on
Manchester University just switched on the world's largest neuromorphic

supercomputer
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It won't be long before Al mimics a human brain
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MIT researchers develop new chip
design to take us closer to computers
that work like human brains
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IBM is teaching Al to behave more like
the human brain
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Implementation
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Our experiments with artificial agents yielded grid-like
representations (“grid units”) that were strikingly similar to biological
grid cells in foraging mammals.
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Adding constraints to the environment modifies the shape of the
place fields.

SR hypothesis is in agreement with the observation that rewarded
locations are represented by a higher number of place cells.
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Generative Adversarial Networks

Visual attention

Attention in CNNs
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MERLIN Architecture

Consolidation of experience
Novel vs. routine circuits
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Same goal, different strengths... merge!
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* 16 /32 single-ended recording channels (Intan)
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* 6 independent bipolar stimulating channels

« Stimulator compliance voltage 110 V

* Altera CycloneV FPGA logic
* Atmel ARM SAM4 CPU
* Clock speed: 50 MHz

* 64 GB on-board data storage

nature

International journal of science

Article | Published: 22 October 2006

Long-term motor cortex plasticity
induced by an electronic neural implant
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and the Modern Al

Goal of the computation

What is the purpose of computation? Almost the same

Algorithm and representation
What representations does the system use?
What processes are in use to manipulate representations?

Comparable
here and there

Implementation
How is the system physically realized?

Quite different
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