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The idea of predictive coding in neuroscience
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PART I 
THE IDEA OF PREDICTIVE ENCODER

"prediction may also serve as a 
powerful unsupervised learning signal"
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PREDICTIVE GENERATIVE NETWORK 
(a.k.a “Predictive Encoder” Palm 2012)

vs.

Long Short-Term Memory (LSTM)

5 - 15 steps

1024 units
http://keras.io
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PART II 
ADVERSARIAL LOSS

"the generator is trained to maximally 
confuse the adversarial discriminator"
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“with adversarial loss alone the 
generator easily found solutions 
that fooled the discriminator, but 
did not look anything like the 
correct samples”

MSE model is fairly 
faithful to the 
identities of the 
faces, but produces 
blurred versions

combined AL/MSE 
model tends to 
underfit the identity 
towards a more 
average face



PART III 
INTERNAL REPRESENTATIONS AND LATENT VARIABLES

"we are interested in understanding the 
representations learned by the models"



PGN model LSTM activities L2 regression Value of a 
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“An MDS algorithm aims to place each object in N-dimensional 
space such that the between-object distances are preserved 
as well as possible.”

MULTIDIMENSIONAL SCALING



PART IV 
USEFULNESS OF PREDICTIVE LEARNING

"representations trained with 
a predictive loss outperform 
other models of comparable 
complexity in a supervised 

classification problem"
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• Encoder-LSTM-Decoder to predict next frame (PGN) 
• Encoder-LSTM-Decoder to predict last frame (AE LSTM dynamic) 
• Encoder-LSTM-Decoder on frames made into static movies (AE LSTM static) 
• Encoder-FC-Decoder with #weights as in LSTM (AE FC #weights) 
• Encoder-FC-Decoder with #units as in LSTM (AE FC #units)




