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The idea of predictive coding in neuroscience
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‘state-of-the-art deep ‘we explore the idea that

learning models rely on prediction is not only a
millions of labeled training useful end-goal, but may
examples to learn” also serve as a powertul
unsupervised learning
signal”

“In contrast to biological
systems, where learning Is
largely unsupervised”
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HE IDEA OF PREDICTIVE ENCODER

‘orediction may also serve as a
powerful unsupervised learning signal”



PREDICTIVE GENERATIVE NETWORK
(a.k.a “Predictive Encoder” paim 2012)
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Reconstruction

Can we do prediction? > n



PREDICTIVE GENERATIVE NETWORK
(a.k.a “Predictive Encoder” paim 2012)
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PREDICTIVE GENERATIVE NETWORK
(a.k.a “Predictive Encoder” paim 2012)
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PREDICTIVE GENERATIVE NETWORK
(a.k.a “Predictive Encoder” paim 2012)
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PREDICTIVE GENERATIVE NETWORK

(a.k.a “Predictive Encoder” paim 2012)
5 - 15 steps

Long Short-Term Memory (LSTM)
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Figure 2: Example prediction sequence the for bouncing
balls dataset. Predictions are repeatedly generated one step
ahead using the prior ten frames as input.

Table 1: Average prediction
error for the bouncing balls
dataset. T(Gan et al., 2015)
°(Mittelman et al., 2014)
Model Error

PGN 0.65 4+ 0.11
DTSBN T 2.79 4+ 0.39
SRTRBM ©¢ 3.31 +0.33
RTRBM ¢ 3.88 +0.33
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PART ||
ADVERSARIAL LOSS

'the generator is trained to maximally
confuse the adversarial discriminator”



Truth

Preceding Frames




5 - 15 steps

Long Short-Term Memory (LSTM) 1568 units

Fully connected layer

2 layers NN upsampling
Convolution

Relu

Max-pooling

Rel.u
2X

ENCODER
44d0O4dd

Convolution

MSE loss
RMSProp optimizer
| R 0.001

aﬂi:t G(x?lt) vs. 'CB%-Fl




5 - 15 steps

Long Short-Term Memory (LSTM) 1568 units

Fully connected layer

2 layers NN upsampling
Convolution

Relu

VISProp optimizer
| R 0.001

m?l:t G(:E?lt) vS. :B??é-Fl

Max-pooling

Rel.u
2X

ENCODER
44d0O4dd

Convolution




ENCODER

d4d0oO4dd



ENCODER
d4d0oO4dd

a7
0
-
O
O
Z.
&




ENCODER
d4d0O4dd

ENCODER

a4
[
-
O
O
Z.
[




ENCODER
d4d0O4dd

3 FC layers
(relu, relu, softmax)
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'trained to maximize the probability
that a proposed frame came from the
ground truth data and minimize it
when it is produced by the generator”
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'trained to maximize the probability
that a proposed frame came from the
ground truth data and minimize it
when it is produced by the generator”
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'trained to maximize the probability
‘ that a proposed frame came from the
RNN ground truth data and minimize it

when it is produced by the generator”
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“‘with adversarial loss alone the

| _ faithful to the model tends to
generator easily found Solutions  jqantities of the underfit the identity
that fooled the discriminator, but faces, but produces towards a more
aid not look anything like the blurred versions average face

correct samples”
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INTERNAL REPRESENTATIONS AND LATENT VARIABLES

‘we are interested in understanding the
representations learned by the models”
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“An MDS algorithm aims to place each object in N-dimensional
space such that the between-object distances are preserved

as well as possible.”
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Figure 5: MDS of LSTM Space
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Figure 6: Projection of LSTM feature space on latent vari-
ables axes. Axes are in the direction of regression coeffi-
cients. A different regression was fit for each epoch.



‘representations trained with
a predictive loss outperform
other models of comparable
complexity in a supervised
classification problem”
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USEFULNESS OF PREDICTIVE LEARNING



THE TASK: 50 randomly generated faces (12 angles per each)
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THE TASK: 50 randomly generated faces (12 angles per each)
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models: representation class
—ncoder-LSTM-Decoder to predict next frame (PGN)
-ncoder-LSTM-Decoder to predict last frame (AE LSTM dynamic)
—ncoder-LSTM-Decoder on frames made into static movies (AE LSTM static)
-ncoder-FC-Decoder with #weights as in LSTM (AE FC #weights)

-ncoder-

-C-Decoder with #units as in LSTM (AE FC #units)
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