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• Augmented: 8 reflections/rotations 
• Test set (1M) accuracy: 57.0% 
• 3 ms to select an action
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Same architecture
Weights    are initialized with⇢ �

• Self-play: current network vs. 
randomized pool of previous versions 

• 80% wins against Supervised Network 
• 85% wins against Pachi (no search yet!) 
• 3 ms to select an action
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Each node s has edges (s, a) for all legal 
actions and stores statistics:

Prior Number of 
evaluations

Number of 
rollouts

MC value 
estimate
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estimate

Combined 
mean action 

value

ASYNCHRONOUS POLICY AND VALUE MCTS

Simulation starts at the root and stops at 
time L, when a leaf (unexplored state) is 
found.

Position      is added to evaluation queue.sL

Bunch of nodes selected for evaluation…
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Node s is evaluated using 
the value network to obtain

and using rollout simulation 
with policy    till the end of 
each simulated game to 
get the final game score.

p⇡(a|s)
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Each leaf is evaluated, we are ready to propagate updates
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APV-MCTS ASYNCHRONOUS POLICY AND VALUE MCTS

Statistics along the paths of each 
simulation are updated during the 
backward pass though t < L

visits counts are updated as well

Finally overall evaluation of each 
visited state-action edge is updated

Current tree is updated
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Tree is expanded, fully updated and ready for the next move!

Once an edge (s, a) is visited enough (       ) 
times it is included into the tree with s’

nthr

It is initialized using the tree policy                to

and updated with SL policy:  

p⌧ (a|s0)
⌧





https://www.youtube.com/watch?v=oRvlyEpOQ-8

WINNING



https://www.youtube.com/watch?v=oRvlyEpOQ-8


