

David Silver et al. from Google DeepMind

Mastering the game of Go with deep
neural networks and tree search

Article overview by Ilya Kuzovkin

THE GAME OF GO

Board

BOARD

STONES

BOARD

STONES

GROUPS

BOARD

LIBERTIES

STONES

GROUPS

Board

LIBERTIES

*

Capture

STONES

GROUPS

BOARD

LIBERTIES

*

STONES

Capture

Ko

GROUPS

Board

LIBERTIES

EXAMPLES

STONES

CAPTURE

Ko

GROUPS

Board

LIBERTIES

EXAMPLES

CAPTURE

Ko

STONES

GROUPS

Board

LIBERTIES

EXAMPLES

CAPTURE

Ko

STONES

000

0

GROUPS

Board

STONES

GROUPS

LIBERTIES

CAPTURE

Ko

EXAMPLES

Two eyes

Board

STONES

CAPTURE

Ko

GROUPS

TRAINING THE BUILDING BLOCKS

SUPERVISED CLASSIFICATION

REINFORCEMENT

SUPERVISED REGRESSION

Supervised policy network $p_{\sigma}(a|s)$

Reinforcement policy network

 $p_{\rho}(a|s)$

Value network $v_{ heta}(s)$

Rollout policy network $p_{\pi}(a|s)$

Tree policy network $p_{ au}(a|s)$

$$p_{\sigma\!/\!
ho}$$
 (a \mid s)

$$p_{\sigma/\rho}$$
 (a|s)

Softmax

1 convolutional layer 1x1 ReLU

11 convolutional layers 3x3 with k=192 filters, ReLU

1 convolutional layer 5x5 with k=192 filters, ReLU

• 29.4M positions from games between 6 to 9 dan players

Softmax

1 convolutional layer 1x1 ReLU

11 convolutional layers 3x3 with k=192 filters, ReLU

1 convolutional layer 5x5 with k=192 filters, ReLU

• 29.4M positions from games between 6 to 9 *dan* players

$$p_{\sigma/\rho}$$
 (a|s)

$$\Delta \sigma = \frac{\alpha}{m} \sum_{k=1}^{m} \frac{\partial \log p_{\sigma}(a^k | s^k)}{\partial \sigma}$$

Softmax

1 convolutional layer 1x1 ReLU

11 convolutional layers 3x3 with k=192 filters, ReLU

1 convolutional layer 5x5 with k=192 filters, ReLU

- stochastic gradient ascent
- learning rate α = 0.003, halved every 80M steps
- batch size m = 16
- 3 weeks on 50 GPUs to make 340M steps

$$p_{\sigma/\rho}$$
 (a|s)

- 29.4M positions from games between 6 to 9 dan players
- Augmented: 8 reflections/rotations
- Test set (1M) accuracy: 57.0%
- 3 ms to select an action

$$\Delta \sigma = \frac{\alpha}{m} \sum_{k=1}^{m} \frac{\partial \log p_{\sigma}(a^k | s^k)}{\partial \sigma}$$

Softmax

1 convolutional layer 1x1 ReLU

11 convolutional layers 3x3 with k=192 filters, ReLU

1 convolutional layer 5x5 with k=192 filters, ReLU

- stochastic gradient ascent
- learning rate α = 0.003, halved every 80M steps
- batch size m = 16
- 3 weeks on 50 GPUs to make 340M steps

Feature	# of planes	Description
Stone colour	3	Player stone / opponent stone / empty
Ones	1	A constant plane filled with 1
Turns since	8	How many turns since a move was played
Liberties	8	Number of liberties (empty adjacent points)
Capture size	8	How many opponent stones would be captured
Self-atari size	8	How many of own stones would be captured
Liberties after move	8	Number of liberties after this move is played
Ladder capture	1	Whether a move at this point is a successful ladder capture
Ladder escape	1	Whether a move at this point is a successful ladder escape
Sensibleness	1	Whether a move is legal and does not fill its own eyes
Zeros	1	A constant plane filled with 0
Player color	1	Whether current player is black

Feature	# of planes	Description
Stone colour	3	Player stone / opponent stone / empty
Ones	1	A constant plane filled with 1
Turns since	8	How many turns since a move was played
Liberties	8	Number of liberties (empty adjacent points)
Capture size	8	How many opponent stones would be captured
Self-atari size	8	How many of own stones would be captured
Liberties after move	8	Number of liberties after this move is played
Ladder capture	1	Whether a move at this point is a successful ladder capture
Ladder escape	1	Whether a move at this point is a successful ladder escape
Sensibleness	1	Whether a move is legal and does not fill its own eyes
Zeros	1	A constant plane filled with 0
Player color	1	Whether current player is black

Feature	# of planes	Description
Stone colour	3	Player stone / opponent stone / empty
Ones	1	A constant plane filled with 1
Turns since	8	How many turns since a move was played
Liberties	8	Number of liberties (empty adjacent points)
Capture size	8	How many opponent stones would be captured
Self-atari size	8	How many of own stones would be captured
Liberties after move	8	Number of liberties after this move is played
Ladder capture	1	Whether a move at this point is a successful ladder capture
Ladder escape	1	Whether a move at this point is a successful ladder escape
Sensibleness	1	Whether a move is legal and does not fill its own eyes
Zeros	1	A constant plane filled with 0

Player color

Whether current player is black

Feature	# of planes	Description
Stone colour	3	Player stone / opponent stone / empty
Ones	1	A constant plane filled with 1
Turns since	8	How many turns since a move was played
Liberties	8	Number of liberties (empty adjacent points)
Capture size	8	How many opponent stones would be captured
Self-atari size	8	How many of own stones would be captured
Liberties after move	8	Number of liberties after this move is played
Ladder capture	1	Whether a move at this point is a successful ladder capture
Ladder escape	1	Whether a move at this point is a successful ladder escape
Sensibleness	1	Whether a move is legal and does not fill its own eyes
Zeros	1	A constant plane filled with 0
Player color	1	Whether current player is black

1 Whether current player is black

- Supervised same data as $p_{\sigma}(a|s)$
- Less accurate: 24.2% (vs. 57.0%)
- Faster: 2µs per action (1500 times)
- Just a linear model with softmax

- Supervised same data as $p_{\sigma}(a|s)$
- Less accurate: 24.2% (vs. 57.0%)
- Faster: 2µs per action (1500 times)
- Just a linear model with softmax

Feature	# of patterns	Description
Response	1	Whether move matches one or more response pattern features
Save atari	1	Move saves stone(s) from capture
Neighbour	8	Move is 8-connected to previous move
Nakade	8192	Move matches a nakade pattern at captured stone
Response pattern	32207	Move matches 12-point diamond pattern near previous move
Non-response pattern	69338	Move matches 3×3 pattern around move

Tree policy $p_{\tau}(a|s)$

- Supervised same data as $p_{\sigma}(a|s)$
- Less accurate: 24.2% (vs. 57.0%)
- Faster: 2µs per action (1500 times)
- Just a linear model with softmax

Feature	# of patterns	Description
Response	1	Whether move matches one or more response pattern features
Save atari	1	Move saves stone(s) from capture
Neighbour	8	Move is 8-connected to previous move
Nakade	8192	Move matches a nakade pattern at captured stone
Response pattern	32207	Move matches 12-point diamond pattern near previous move
Non-response pattern	69338	Move matches 3×3 pattern around move
Self-atari	1	Move allows stones to be captured
Last move distance	34	Manhattan distance to previous two moves
Non-response pattern	32207	Move matches 12-point diamond pattern centred around move

Tree policy $p_{\tau}(a|s)$

- Supervised same data as $p_{\sigma}(a|s)$
- Less accurate: 24.2% (vs. 57.0%)
- Faster: 2µs per action (1500 times)
- Just a linear model with softmax

•	"similar to the rollout policy but
	with more features"

Feature	# of patterns	Description
Response	1	Whether move matches one or more response pattern features
Save atari	1	Move saves stone(s) from capture
Neighbour	8	Move is 8-connected to previous move
Nakade	8192	Move matches a nakade pattern at captured stone
Response pattern	32207	Move matches 12-point diamond pattern near previous move
Non-response pattern	69338	Move matches 3×3 pattern around move
Self-atari	1	Move allows stones to be captured
Last move distance	34	Manhattan distance to previous two moves
Non-response pattern	32207	Move matches 12-point diamond pattern centred around move

Reinforcement policy network $p_{\rho}(a|s)$

Same architecture Weights ρ are initialized with σ

Reinforcement policy network $p_{\rho}(a|s)$

$$p_{\sigma/\rho}$$
 (a|s)

Same architecture Weights ρ are initialized with σ

Self-play: current network vs.
 randomized pool of previous versions

Reinforcement policy network $p_{\rho}(a|s)$

$$p_{\sigma/\rho}$$
 (a|s)

Same architecture Weights ρ are initialized with σ

Self-play: current network vs.
 randomized pool of previous versions

$$\Delta \rho = \frac{\alpha}{n} \sum_{i=1}^{n} \sum_{t=1}^{T^i} \frac{\partial \log p_{\rho}(a_t^i | s_t^i)}{\partial \rho} (z_t^i - \nu(s_t^i))$$

• Play a game until the end, get the reward $z_t = \pm r(s_T) = \pm 1$

$$p_{\rho}(a|s)$$

$$p_{\sigma/\rho}$$
 (a|s)

Same architecture Weights ρ are initialized with σ

Self-play: current network vs.
 randomized pool of previous versions

$$\Delta \rho = \frac{\alpha}{n} \sum_{i=1}^{n} \sum_{t=1}^{T^i} \frac{\partial \log p_{\rho}(a_t^i | s_t^i)}{\partial \rho} (z_t^i - \nu(s_t^i))$$

- Play a game until the end, get the reward $z_t = \pm r(s_T) = \pm 1$
- Set $z_t^i=z_t$ and play the same game again, this time updating the network parameters at each time step t

$$p_{\rho}(a|s)$$

$$p_{\sigma/\rho}$$
 (a|s)

Same architecture Weights ρ are initialized with σ

 Self-play: current network vs. randomized pool of previous versions

$$\Delta \rho = \frac{\alpha}{n} \sum_{i=1}^{n} \sum_{t=1}^{T^i} \frac{\partial \log p_{\rho}(a_t^i | s_t^i)}{\partial \rho} (z_t^i - \nu(s_t^i))$$

- Play a game until the end, get the reward $z_t = \pm r(s_T) = \pm 1$
- Set $z_t^\imath=z_t$ and play the same game again, this time updating the network parameters at each time step t
- $v(s_t^i) = \dots$
 - 0 "on the first pass through the training pipeline"
 - $v_{ heta}(s_t^i)$ "on the second pass"

$$p_{\rho}(a|s)$$

$$p_{\sigma/\rho}$$
 (a|s)

Same architecture Weights ρ are initialized with σ

 Self-play: current network vs. randomized pool of previous versions

$$\Delta \rho = \frac{\alpha}{n} \sum_{i=1}^{n} \sum_{t=1}^{T^i} \frac{\partial \log p_{\rho}(a_t^i | s_t^i)}{\partial \rho} (z_t^i - \nu(s_t^i))$$

- Play a game until the end, get the reward $z_t = \pm r(s_T) = \pm 1$
- Set $z_t^\imath=z_t$ and play the same game again, this time updating the network parameters at each time step t
- $v(s_t^i) = \dots$
 - 0 "on the first pass through the training pipeline"
 - $v_{ heta}(s_t^i)$ "on the second pass"
- batch size n = 128 games
- 10,000 batches
- One day on 50 GPUs

$$p_{\rho}(a|s)$$

$$p_{\sigma/\rho}$$
 (a|s)

Same architecture Weights ρ are initialized with σ

- Self-play: current network vs.
 randomized pool of previous versions
- 80% wins against Supervised Network
- 85% wins against *Pachi* (no search yet!)
- 3 ms to select an action

$$\Delta \rho = \frac{\alpha}{n} \sum_{i=1}^{n} \sum_{t=1}^{T^i} \frac{\partial \log p_{\rho}(a_t^i | s_t^i)}{\partial \rho} (z_t^i - \nu(s_t^i))$$

- Play a game until the end, get the reward $z_t = \pm r(s_T) = \pm 1$
- Set $z_t^\imath=z_t$ and play the same game again, this time updating the network parameters at each time step t
- $v(s_t^i) = \dots$
 - 0 "on the first pass through the training pipeline"
 - $v_{ heta}(s_t^i)$ "on the second pass"
- batch size n = 128 games
- 10,000 batches
- One day on 50 GPUs

Value network $v_{ heta}(s)$

Fully connected layer 1 tanh unit

Fully connected layer 256 ReLU units

1 convolutional layer 1x1 ReLU

11 convolutional layers 3x3 with k=192 filters, ReLU

1 convolutional layer 5x5 with k=192 filters, ReLU

Evaluate the value of the position s under policy p:

$$v^p(s) = \mathbb{E}[z_t|s_t = s, a_{t...T} \sim p]$$

• Double approximation $\nu_{\theta}(s) \approx \nu^{p_{\rho}}(s) \approx \nu^{*}(s)$

Fully connected layer 1 tanh unit

Fully connected layer 256 ReLU units

1 convolutional layer 1x1 ReLU

11 convolutional layers 3x3 with k=192 filters, ReLU

1 convolutional layer 5x5 with k=192 filters, ReLU

$$v^p(s) = \mathbb{E}[z_t|s_t = s, a_{t...T} \sim p]$$

• Double approximation $v_{\theta}(s) \approx v^{p_{\rho}}(s) \approx v^{*}(s)$

$$\Delta \theta = \frac{\alpha}{m} \sum_{k=1}^{m} (z^k - \nu_{\theta}(s^k)) \frac{\partial \nu_{\theta}(s^k)}{\partial \theta}$$

Fully connected layer 1 tanh unit

Fully connected layer 256 ReLU units

1 convolutional layer 1x1 ReLU

11 convolutional layers 3x3 with k=192 filters, ReLU

1 convolutional layer 5x5 with k=192 filters, ReLU

19 x 19 x 49 input

 Stochastic gradient descent to minimize MSE

• Evaluate the value of the position s under policy p:

$$v^p(s) = \mathbb{E}[z_t|s_t = s, a_{t...T} \sim p]$$

• Double approximation $v_{\theta}(s) \approx v^{p_{\rho}}(s) \approx v^{*}(s)$

$$\Delta \theta = \frac{\alpha}{m} \sum_{k=1}^{m} (z^k - \nu_{\theta}(s^k)) \frac{\partial \nu_{\theta}(s^k)}{\partial \theta}$$

Fully connected layer 1 tanh unit

Fully connected layer 256 ReLU units

1 convolutional layer 1x1 ReLU

11 convolutional layers 3x3 with k=192 filters, ReLU

1 convolutional layer 5x5 with k=192 filters, ReLU

- Stochastic gradient descent to minimize MSE
- Train on 30M state-outcome pairs (s,z), each from a unique game generated by self-play:

Evaluate the value of the position s under policy p:

$$v^p(s) = \mathbb{E}[z_t|s_t = s, a_{t...T} \sim p]$$

• Double approximation $v_{\theta}(s) \approx v^{p_{\rho}}(s) \approx v^{*}(s)$

$$\Delta \theta = \frac{\alpha}{m} \sum_{k=1}^{m} (z^k - \nu_{\theta}(s^k)) \frac{\partial \nu_{\theta}(s^k)}{\partial \theta}$$

Fully connected layer 1 tanh unit

Fully connected layer 256 ReLU units

1 convolutional layer 1x1 ReLU

11 convolutional layers 3x3 with k=192 filters, ReLU

1 convolutional layer 5x5 with k=192 filters, ReLU

- Stochastic gradient descent to minimize MSE
- Train on 30M state-outcome pairs (s,z), each from a unique game generated by self-play:
 - choose a random time step u
 - ▶ sample moves t=1...u-1 from SL policy
 - make random move u
 - sample t=u+1...T from RL policy and get game outcome z
 - ullet add (s_u,z_u) pair to the training set

$$v^p(s) = \mathbb{E}[z_t|s_t = s, a_{t...T} \sim p]$$

• Double approximation $v_{\theta}(s) \approx v^{p_{\rho}}(s) \approx v^{*}(s)$

$$\Delta \theta = \frac{\alpha}{m} \sum_{k=1}^{m} (z^k - \nu_{\theta}(s^k)) \frac{\partial \nu_{\theta}(s^k)}{\partial \theta}$$

Fully connected layer 1 tanh unit

Fully connected layer 256 ReLU units

1 convolutional layer 1x1 ReLU

11 convolutional layers 3x3 with k=192 filters, ReLU

1 convolutional layer 5x5 with k=192 filters, ReLU

- Stochastic gradient descent to minimize MSE
- Train on 30M state-outcome pairs (s,z), each from a unique game generated by self-play:
 - choose a random time step u
 - sample moves t=1...u-1 from SL policy
 - make random move u
 - sample t=u+1...T from RL policy and get game outcome z
 - ullet add (s_u,z_u) pair to the training set
- One week on 50 GPUs to train on 50M batches of size m=32

$$v^p(s) = \mathbb{E}[z_t|s_t = s, a_{t...T} \sim p]$$

- Double approximation $v_{\theta}(s) \approx v^{p_{\rho}}(s) \approx v^{*}(s)$
- MSE on the test set: 0.234
- Close to MC estimation from RL policy; 15,000 faster

$$\Delta \theta = \frac{\alpha}{m} \sum_{k=1}^{m} (z^k - \nu_{\theta}(s^k)) \frac{\partial \nu_{\theta}(s^k)}{\partial \theta}$$

Fully connected layer 1 tanh unit

Fully connected layer 256 ReLU units

1 convolutional layer 1x1 ReLU

11 convolutional layers 3x3 with k=192 filters, ReLU

1 convolutional layer 5x5 with k=192 filters, ReLU

- Stochastic gradient descent to minimize MSE
- Train on 30M state-outcome pairs (s,z), each from a unique game generated by self-play:
 - choose a random time step u
 - ▶ sample moves t=1...u-1 from SL policy
 - make random move u
 - sample t=u+1...T from RL policy and get game outcome z
 - add (s_u, z_u) pair to the training set
- One week on 50 GPUs to train on 50M batches of size m=32

Value network

Selection

Selection

Each node *s* has edges (*s*, *a*) for all legal actions and stores statistics:

 $\{P(s,a),\ N_{v}(s,a),\ N_{r}(s,a),\ W_{v}(s,a),\ W_{r}(s,a),\ Q(s,a)\}$ Prior Number of evaluations Number of rollouts MC value estimate Rollout value Combined mean action value

Selection

Each node s has edges (s, a) for all legal actions and stores statistics:

$$\{P(s,a),\ N_v(s,a),\ N_r(s,a),\ W_v(s,a),\ W_r(s,a),\ Q(s,a)\}$$
 Prior Number of evaluations Number of evaluations rollouts Stimate St

Simulation starts at the root and stops at time L, when a leaf (unexplored state) is found. $a_t = \operatorname{argmax}_a (Q(s_t, a) + u(s_t, a))$

$$u(s,a) \propto \frac{P(s,a)}{1 + N(s,a)}$$

Selection

Each node s has edges (s, a) for all legal actions and stores statistics:

$$\{P(s,a),\ N_{v}(s,a),\ N_{r}(s,a),\ W_{v}(s,a),\ W_{r}(s,a),\ Q(s,a)\}$$
 Prior Number of evaluations Number of evaluations rollouts action value estimate estimate value

Simulation starts at the root and stops at time L, when a leaf (unexplored state) is found. $a_t = \operatorname{argmax}_a (Q(s_t, a) + u(s_t, a))$ $u(s, a) \propto \frac{P(s, a)}{1 + N(s, a)}$

Position s_L is added to evaluation queue.

Selection

Each node s has edges (s, a) for all legal actions and stores statistics:

$$\{P(s,a),\ N_{v}(s,a),\ N_{r}(s,a),\ W_{v}(s,a),\ W_{r}(s,a),\ Q(s,a)\}$$
 Prior Number of evaluations Number of evaluations rollouts action value estimate estimate value

Simulation starts at the root and stops at time L, when a leaf (unexplored state) is found. $a_t = \operatorname{argmax}_a \left(Q(s_t, a) + u(s_t, a) \right)$ $u(s, a) \propto \frac{P(s, a)}{1 + N(s, a)}$

Position s_L is added to evaluation queue.

Bunch of nodes selected for evaluation...

Evaluation

Evaluation

Node s is evaluated using the value network to obtain $v_{ heta}(s)$

Evaluation

Node *s* is evaluated using the value network to obtain

$$v_{\theta}(s)$$

 $v_{\theta} \left(\begin{array}{c} \downarrow \downarrow \downarrow \downarrow \\ \downarrow \downarrow \downarrow \downarrow \\ \\ \sim \rho_{\pi} \end{array} \right)$

and using rollout simulation with policy p_{π} till the end of each simulated game to get the final game score.

$$z_t = \pm r(s_T)$$

Evaluation

Node *s* is evaluated using the value network to obtain

$$v_{\theta}(s)$$

 $\nu_{\theta} \left(\begin{array}{c} \uparrow \downarrow \downarrow \downarrow \downarrow \\ \downarrow \downarrow \downarrow \downarrow \\ \\ \sim \rho_{\pi} \\ \downarrow \downarrow \\ \end{array} \right)$

and using rollout simulation with policy p_{π} till the end of each simulated game to get the final game score.

$$z_t = \pm r(s_T)$$

r († † †)

Each leaf is evaluated, we are ready to propagate updates

Backup

Statistics along the paths of each simulation are updated during the backward pass though t < L

$$W_{\nu}(s_t, a_t) \leftarrow W_{\nu}(s_t, a_t) + \nu_{\theta}(s_L)$$

 $W_{r}(s_t, a_t) \leftarrow W_{r}(s_t, a_t) + z_t$

Statistics along the paths of each simulation are updated during the backward pass though t < L

$$W_{\nu}(s_t, a_t) \leftarrow W_{\nu}(s_t, a_t) + \nu_{\theta}(s_L)$$

 $W_{r}(s_t, a_t) \leftarrow W_{r}(s_t, a_t) + z_t$

visits counts are updated as well

$$N_r(s_t, a_t) \leftarrow N_r(s_t, a_t) + 1$$

 $N_v(s_t, a_t) \leftarrow N_v(s_t, a_t) + 1$

Statistics along the paths of each simulation are updated during the backward pass though t < L

$$W_{v}(s_{t}, a_{t}) \leftarrow W_{v}(s_{t}, a_{t}) + v_{\theta}(s_{L})$$
$$W_{r}(s_{t}, a_{t}) \leftarrow W_{r}(s_{t}, a_{t}) + z_{t}$$

visits counts are updated as well

$$N_r(s_t, a_t) \leftarrow N_r(s_t, a_t) + 1$$

 $N_v(s_t, a_t) \leftarrow N_v(s_t, a_t) + 1$

Finally overall evaluation of each visited state-action edge is updated

$$Q(s, a) = (1 - \lambda) \frac{W_{\nu}(s, a)}{N_{\nu}(s, a)} + \lambda \frac{W_{r}(s, a)}{N_{r}(s, a)}$$

Statistics along the paths of each simulation are updated during the backward pass though t < L

$$W_v(s_t, a_t) \leftarrow W_v(s_t, a_t) + v_\theta(s_L)$$

 $W_r(s_t, a_t) \leftarrow W_r(s_t, a_t) + z_t$

visits counts are updated as well

$$N_r(s_t, a_t) \leftarrow N_r(s_t, a_t) + 1$$

 $N_v(s_t, a_t) \leftarrow N_v(s_t, a_t) + 1$

Finally overall evaluation of each visited state-action edge is updated

$$Q(s, a) = (1 - \lambda) \frac{W_{\nu}(s, a)}{N_{\nu}(s, a)} + \lambda \frac{W_{r}(s, a)}{N_{r}(s, a)}$$

Current tree is updated

Expansion

Expansion

Once an edge (s, a) is visited enough ($n_{\rm thr}$) times it is included into the tree with s'

Expansion

Once an edge (s, a) is visited enough ($n_{\rm thr}$) times it is included into the tree with s'

It is initialized using the tree policy $p_{\tau}(a|s')$ to $\{N(s',a)=N_r(s',a)=0, W(s',a)=W_r(s',a)=0, P(s',a)=p_{\tau}(a|s')\}$ and updated with SL policy: $P(s',a)\leftarrow p_{\sigma}(a|s')$

Expansion

Once an edge (s, a) is visited enough ($n_{\rm thr}$) times it is included into the tree with s'

It is initialized using the tree policy $p_{\tau}(a|s')$ to $\{N(s',a)=N_r(s',a)=0, W(s',a)=W_r(s',a)=0, P(s',a)=p_{\tau}(a|s')\}$ and updated with SL policy: $P(s',a) \leftarrow p_{\sigma}(a|s')$

Tree is expanded, fully updated and ready for the next move!

