
Article overview by
Ilya Kuzovkin

David Silver et al. from Google DeepMind

Reinforcement Learning Seminar
University of Tartu, 2016

Mastering the game of Go with deep
neural networks and tree search

THE GAME OF GO

BOARD

BOARD

STONES

BOARD

STONES

GROUPS

BOARD

STONES

LIBERTIES

GROUPS

BOARD

STONES

LIBERTIES

CAPTURE

GROUPS

BOARD

STONES

LIBERTIES

CAPTURE KO

GROUPS

BOARD

STONES

LIBERTIES

CAPTURE KO

GROUPS

EXAMPLES

BOARD

STONES

LIBERTIES

CAPTURE KO

GROUPS

EXAMPLES

BOARD

STONES

LIBERTIES

CAPTURE KO

GROUPS

EXAMPLES

BOARD

STONES

LIBERTIES

CAPTURE

TWO EYES

KO

GROUPS

EXAMPLES

BOARD

STONES

LIBERTIES

CAPTURE

FINAL COUNT

KO

GROUPS

EXAMPLES

TWO EYES

TRAINING

Supervised
policy network

p�(a|s)

Reinforcement
policy network

p⇢(a|s)
Rollout policy

network
p⇡(a|s)

Value!
network
v✓(s)

Tree policy
network
p⌧ (a|s)

TRAINING THE BUILDING BLOCKS
SUPERVISED

CLASSIFICATION REINFORCEMENT SUPERVISED
REGRESSION

Supervised
policy network

p�(a|s)

Supervised
policy network

p�(a|s)

19 x 19 x 48 input

1 convolutional layer 5x5
with k=192 filters, ReLU

11 convolutional layers 3x3
with k=192 filters, ReLU

1 convolutional layer 1x1
ReLU

Softmax

Supervised
policy network

p�(a|s)

19 x 19 x 48 input

1 convolutional layer 5x5
with k=192 filters, ReLU

11 convolutional layers 3x3
with k=192 filters, ReLU

Softmax

1 convolutional layer 1x1
ReLU

• 29.4M positions from games
between 6 to 9 dan players

Supervised
policy network

p�(a|s)

19 x 19 x 48 input

1 convolutional layer 5x5
with k=192 filters, ReLU

11 convolutional layers 3x3
with k=192 filters, ReLU

Softmax • stochastic gradient ascent
!
• learning rate = 0.003,

halved every 80M steps
!
• batch size m = 16
!
• 3 weeks on 50 GPUs to make

340M steps

↵1 convolutional layer 1x1
ReLU

• 29.4M positions from games
between 6 to 9 dan players

Supervised
policy network

p�(a|s)

19 x 19 x 48 input

1 convolutional layer 5x5
with k=192 filters, ReLU

11 convolutional layers 3x3
with k=192 filters, ReLU

Softmax • stochastic gradient ascent
!
• learning rate = 0.003,

halved every 80M steps
!
• batch size m = 16
!
• 3 weeks on 50 GPUs to make

340M steps

↵1 convolutional layer 1x1
ReLU

• 29.4M positions from games
between 6 to 9 dan players

• Augmented: 8 reflections/rotations
• Test set (1M) accuracy: 57.0%
• 3 ms to select an action

19 X 19 X 48 INPUT

19 X 19 X 48 INPUT

19 X 19 X 48 INPUT

19 X 19 X 48 INPUT

Rollout policy p⇡(a|s)
• Supervised — same data as
• Less accurate: 24.2% (vs. 57.0%)
• Faster: 2μs per action (1500 times)
• Just a linear model with softmax

p�(a|s)

Rollout policy p⇡(a|s)
• Supervised — same data as
• Less accurate: 24.2% (vs. 57.0%)
• Faster: 2μs per action (1500 times)
• Just a linear model with softmax

p�(a|s)

Rollout policy p⇡(a|s) Tree policy p⌧ (a|s)
• Supervised — same data as
• Less accurate: 24.2% (vs. 57.0%)
• Faster: 2μs per action (1500 times)
• Just a linear model with softmax

p�(a|s)

Rollout policy p⇡(a|s)

• “similar to the rollout policy but
with more features”

Tree policy p⌧ (a|s)
• Supervised — same data as
• Less accurate: 24.2% (vs. 57.0%)
• Faster: 2μs per action (1500 times)
• Just a linear model with softmax

p�(a|s)

Reinforcement
policy network

p⇢(a|s)

Same architecture
Weights are initialized with⇢ �

Reinforcement
policy network

p⇢(a|s)

Same architecture
Weights are initialized with⇢ �

• Self-play: current network vs.
randomized pool of previous versions

Reinforcement
policy network

p⇢(a|s)

Same architecture
Weights are initialized with⇢ �

• Self-play: current network vs.
randomized pool of previous versions

• Play a game until the end, get the reward zt = ±r(sT) = ±1

Reinforcement
policy network

p⇢(a|s)

Same architecture
Weights are initialized with⇢ �

• Self-play: current network vs.
randomized pool of previous versions

• Play a game until the end, get the reward
• Set and play the same game again, this time

updating the network parameters at each time step t

zt = ±r(sT) = ±1
zit = zt

Reinforcement
policy network

p⇢(a|s)

Same architecture
Weights are initialized with⇢ �

• Self-play: current network vs.
randomized pool of previous versions

• Play a game until the end, get the reward
• Set and play the same game again, this time

updating the network parameters at each time step t
• = …

‣ 0 “on the first pass through the training pipeline”
‣ “on the second pass”

zt = ±r(sT) = ±1
zit = zt

v(sit)

v✓(s
i
t)

Reinforcement
policy network

p⇢(a|s)

Same architecture
Weights are initialized with⇢ �

• Self-play: current network vs.
randomized pool of previous versions

• Play a game until the end, get the reward
• Set and play the same game again, this time

updating the network parameters at each time step t
• = …

‣ 0 “on the first pass through the training pipeline”
‣ “on the second pass”

• batch size n = 128 games
• 10,000 batches
• One day on 50 GPUs

zt = ±r(sT) = ±1
zit = zt

v(sit)

v✓(s
i
t)

Reinforcement
policy network

p⇢(a|s)

Same architecture
Weights are initialized with⇢ �

• Self-play: current network vs.
randomized pool of previous versions

• 80% wins against Supervised Network
• 85% wins against Pachi (no search yet!)
• 3 ms to select an action

• Play a game until the end, get the reward
• Set and play the same game again, this time

updating the network parameters at each time step t
• = …

‣ 0 “on the first pass through the training pipeline”
‣ “on the second pass”

• batch size n = 128 games
• 10,000 batches
• One day on 50 GPUs

zt = ±r(sT) = ±1
zit = zt

v(sit)

v✓(s
i
t)

Value!
network
v✓(s)

19 x 19 x 49 input

1 convolutional layer 5x5
with k=192 filters, ReLU

11 convolutional layers 3x3
with k=192 filters, ReLU

Fully connected layer
256 ReLU units

Value!
network
v✓(s)

Fully connected layer
1 tanh unit

1 convolutional layer 1x1
ReLU

19 x 19 x 49 input

1 convolutional layer 5x5
with k=192 filters, ReLU

11 convolutional layers 3x3
with k=192 filters, ReLU

Fully connected layer
256 ReLU units

Value!
network
v✓(s)

Fully connected layer
1 tanh unit

• Evaluate the value of the position s under policy p:
!
• Double approximation

1 convolutional layer 1x1
ReLU

19 x 19 x 49 input

1 convolutional layer 5x5
with k=192 filters, ReLU

11 convolutional layers 3x3
with k=192 filters, ReLU

Fully connected layer
256 ReLU units

Value!
network
v✓(s)

Fully connected layer
1 tanh unit

• Evaluate the value of the position s under policy p:
!
• Double approximation

1 convolutional layer 1x1
ReLU

• Stochastic gradient descent to
minimize MSE

19 x 19 x 49 input

1 convolutional layer 5x5
with k=192 filters, ReLU

11 convolutional layers 3x3
with k=192 filters, ReLU

Fully connected layer
256 ReLU units

Value!
network
v✓(s)

Fully connected layer
1 tanh unit

• Evaluate the value of the position s under policy p:
!
• Double approximation

1 convolutional layer 1x1
ReLU

• Stochastic gradient descent to
minimize MSE

• Train on 30M state-outcome
pairs , each from a unique
game generated by self-play:

(s, z)

19 x 19 x 49 input

1 convolutional layer 5x5
with k=192 filters, ReLU

11 convolutional layers 3x3
with k=192 filters, ReLU

Fully connected layer
256 ReLU units

Value!
network
v✓(s)

Fully connected layer
1 tanh unit

• Evaluate the value of the position s under policy p:
!
• Double approximation

1 convolutional layer 1x1
ReLU

• Stochastic gradient descent to
minimize MSE

• Train on 30M state-outcome
pairs , each from a unique
game generated by self-play:
‣ choose a random time step u
‣ sample moves t=1…u-1 from

SL policy
‣ make random move u
‣ sample t=u+1…T from RL

policy and get game
outcome z

‣ add pair to the
training set

(s, z)

(su, zu)

19 x 19 x 49 input

1 convolutional layer 5x5
with k=192 filters, ReLU

11 convolutional layers 3x3
with k=192 filters, ReLU

Fully connected layer
256 ReLU units

Value!
network
v✓(s)

Fully connected layer
1 tanh unit

• Evaluate the value of the position s under policy p:
!
• Double approximation

1 convolutional layer 1x1
ReLU

• Stochastic gradient descent to
minimize MSE

• Train on 30M state-outcome
pairs , each from a unique
game generated by self-play:
‣ choose a random time step u
‣ sample moves t=1…u-1 from

SL policy
‣ make random move u
‣ sample t=u+1…T from RL

policy and get game
outcome z

‣ add pair to the
training set

• One week on 50 GPUs to train
on 50M batches of size m=32

(s, z)

(su, zu)

19 x 19 x 49 input

1 convolutional layer 5x5
with k=192 filters, ReLU

11 convolutional layers 3x3
with k=192 filters, ReLU

Fully connected layer
256 ReLU units

Value!
network
v✓(s)

Fully connected layer
1 tanh unit

• Evaluate the value of the position s under policy p:
!
• Double approximation
• MSE on the test set: 0.234
• Close to MC estimation from RL policy; 15,000 faster

1 convolutional layer 1x1
ReLU

• Stochastic gradient descent to
minimize MSE

• Train on 30M state-outcome
pairs , each from a unique
game generated by self-play:
‣ choose a random time step u
‣ sample moves t=1…u-1 from

SL policy
‣ make random move u
‣ sample t=u+1…T from RL

policy and get game
outcome z

‣ add pair to the
training set

• One week on 50 GPUs to train
on 50M batches of size m=32

(s, z)

(su, zu)

PLAYING

APV-MCTS ASYNCHRONOUS POLICY AND VALUE MCTS

APV-MCTS

Each node s has edges (s, a) for all legal
actions and stores statistics:

Prior Number of
evaluations

Number of
rollouts

MC value
estimate

Rollout value
estimate

Combined
mean action

value

ASYNCHRONOUS POLICY AND VALUE MCTS

APV-MCTS

Each node s has edges (s, a) for all legal
actions and stores statistics:

Prior Number of
evaluations

Number of
rollouts

MC value
estimate

Rollout value
estimate

Combined
mean action

value

ASYNCHRONOUS POLICY AND VALUE MCTS

Simulation starts at the root and stops at
time L, when a leaf (unexplored state) is
found.

APV-MCTS

Each node s has edges (s, a) for all legal
actions and stores statistics:

Prior Number of
evaluations

Number of
rollouts

MC value
estimate

Rollout value
estimate

Combined
mean action

value

ASYNCHRONOUS POLICY AND VALUE MCTS

Simulation starts at the root and stops at
time L, when a leaf (unexplored state) is
found.

Position is added to evaluation queue.sL

APV-MCTS

Each node s has edges (s, a) for all legal
actions and stores statistics:

Prior Number of
evaluations

Number of
rollouts

MC value
estimate

Rollout value
estimate

Combined
mean action

value

ASYNCHRONOUS POLICY AND VALUE MCTS

Simulation starts at the root and stops at
time L, when a leaf (unexplored state) is
found.

Position is added to evaluation queue.sL

Bunch of nodes selected for evaluation…

APV-MCTS ASYNCHRONOUS POLICY AND VALUE MCTS

APV-MCTS ASYNCHRONOUS POLICY AND VALUE MCTS

Node s is evaluated using
the value network to obtain v✓(s)

APV-MCTS ASYNCHRONOUS POLICY AND VALUE MCTS

Node s is evaluated using
the value network to obtain

and using rollout simulation
with policy till the end of
each simulated game to
get the final game score.

p⇡(a|s)

v✓(s)

APV-MCTS ASYNCHRONOUS POLICY AND VALUE MCTS

Node s is evaluated using
the value network to obtain

and using rollout simulation
with policy till the end of
each simulated game to
get the final game score.

p⇡(a|s)

v✓(s)

Each leaf is evaluated, we are ready to propagate updates

APV-MCTS ASYNCHRONOUS POLICY AND VALUE MCTS

APV-MCTS ASYNCHRONOUS POLICY AND VALUE MCTS

Statistics along the paths of each
simulation are updated during the
backward pass though t < L

APV-MCTS ASYNCHRONOUS POLICY AND VALUE MCTS

Statistics along the paths of each
simulation are updated during the
backward pass though t < L

visits counts are updated as well

APV-MCTS ASYNCHRONOUS POLICY AND VALUE MCTS

Statistics along the paths of each
simulation are updated during the
backward pass though t < L

visits counts are updated as well

Finally overall evaluation of each
visited state-action edge is updated

APV-MCTS ASYNCHRONOUS POLICY AND VALUE MCTS

Statistics along the paths of each
simulation are updated during the
backward pass though t < L

visits counts are updated as well

Finally overall evaluation of each
visited state-action edge is updated

Current tree is updated

APV-MCTS ASYNCHRONOUS POLICY AND VALUE MCTS

APV-MCTS ASYNCHRONOUS POLICY AND VALUE MCTS

Once an edge (s, a) is visited enough ()
times it is included into the tree with s’

nthr

APV-MCTS ASYNCHRONOUS POLICY AND VALUE MCTS

Once an edge (s, a) is visited enough ()
times it is included into the tree with s’

nthr

It is initialized using the tree policy to

and updated with SL policy:

p⌧ (a|s0)
⌧

APV-MCTS ASYNCHRONOUS POLICY AND VALUE MCTS

Tree is expanded, fully updated and ready for the next move!

Once an edge (s, a) is visited enough ()
times it is included into the tree with s’

nthr

It is initialized using the tree policy to

and updated with SL policy:

p⌧ (a|s0)
⌧

https://www.youtube.com/watch?v=oRvlyEpOQ-8

WINNING

https://www.youtube.com/watch?v=oRvlyEpOQ-8

