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“The identity connections introduce 
neither extra parameter nor 
computation complexity”
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• Momentum 0.9 
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• Weight decay 0.0001 
!
• 1.28 million training images 
• 50,000 validation 
• 100,000 test
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• 34-layer ResNet has lower training error. 
This indicates that the degradation 
problem is well addressed and we 
manage to obtain accuracy gains from 
increased depth. 
!

• 34-layer-ResNet reduces the top-1 error 
by 3.5% 
!

• 18-layer ResNet converges faster and 
thus ResNet eases the optimization by 
providing faster convergence at the 
early stage.



GOING DEEPER



Due to time complexity the usual building 
block is replaced by Bottleneck Block

50 / 101 / 152 - layer ResNets are build from those blocks







ANALYSIS ON CIFAR-10







ImageNet Classification 2015 1st 3.57% error

ImageNet Object Detection 2015 1st 194 / 200 categories

ImageNet Object Localization 2015 1st 9.02% error

COCO Detection 2015 1st 37.3%

COCO Segmentation 2015 1st 28.2%

http://research.microsoft.com/en-us/um/people/kahe/ilsvrc15/ilsvrc2015_deep_residual_learning_kaiminghe.pdf


